Options for Estimating Plant Water Requirements for Irrigation Scheduling in Louisiana

Stacia L. Davis Conger, Ph.D. E.I.T.
State Irrigation Specialist
Introduction

• Water use continues to increase across all sectors
• Pattern exists between cultivated cropland and water use for irrigation
Introduction

• Mid-South put focus on soil moisture sensors
 • Louisiana’s efforts
 • Plot studies repeated on three soil types using two sensor types in 2015/2016
 • Various demonstrations conducted with farmers across the state
Introduction

• Example sensor data from on-farm demonstrations
Introduction

- What needs to be considered?

<table>
<thead>
<tr>
<th>Soil sensor-based system</th>
<th>Weather-based system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soils information</td>
<td>Soils information</td>
</tr>
<tr>
<td>• Available water holding capacity</td>
<td>• Available water holding capacity</td>
</tr>
<tr>
<td>• Compaction</td>
<td>• Compaction</td>
</tr>
<tr>
<td>• Irrigation threshold</td>
<td>• Irrigation threshold</td>
</tr>
<tr>
<td>• Sensor selection</td>
<td></td>
</tr>
<tr>
<td>Types of readings</td>
<td>Reliable weather data</td>
</tr>
<tr>
<td>Processing infrastructure</td>
<td>Processing infrastructure</td>
</tr>
<tr>
<td>Communication infrastructure</td>
<td>Plant variety information</td>
</tr>
<tr>
<td>Installation methods/requirements</td>
<td>• Planting date</td>
</tr>
<tr>
<td></td>
<td>• Growth stages</td>
</tr>
<tr>
<td></td>
<td>• Crop coefficients</td>
</tr>
</tbody>
</table>
Introduction

• Hypothesis: A soil water balance can be used to schedule irrigation in the mid-south

Objective 1: Develop a basic decision tool to determine when to trigger furrow irrigation events based on plant water requirements for agronomic crops

Objective 2: Determine the availability and quality of publically available ETo and rainfall data for use in the decision tool
Objective 1: Soil Water Balance

Crop Evapotranspiration
Effective Rainfall
Effective Irrigation
Surface Runoff
Deep Percolation
Objective 1: Soil Water Balance

- Soil water balance

[Excel spreadsheet with red and blue annotations]

Red: Mandatory information

Blue: User inputs

Soil Water Balance for Crop Irrigation Management

Version 1.5 (last Updated 8/30/2016)

Created by Stacia L. Davis, Ph.D.

(318) 741-7430 ext. 1105; sdavis@agcenter.lsu.edu

<table>
<thead>
<tr>
<th>Date</th>
<th>Days after Planting</th>
<th>Root Depth</th>
<th>Field Capacity (in.)</th>
<th>Permanent Wilting Point (in.)</th>
<th>Refill Point (in.)</th>
<th>Starting Water Level (SWL) (in.)</th>
<th>Reference ET (in.)</th>
<th>Reference ET with Projections (in.)</th>
<th>Crop ET (in.)</th>
<th>Total Rainfall (in.)</th>
<th>Effective Rainfall (in.)</th>
<th>Effective Irrigation (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/1</td>
<td>0</td>
<td>10.0</td>
<td>3.0</td>
<td>1.4</td>
<td>2.21</td>
<td>3.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.30</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4/2</td>
<td>1</td>
<td>10.3</td>
<td>3.1</td>
<td>1.4</td>
<td>2.29</td>
<td>3.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.30</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4/3</td>
<td>2</td>
<td>10.7</td>
<td>3.2</td>
<td>1.5</td>
<td>2.36</td>
<td>3.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.30</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4/4</td>
<td>3</td>
<td>11.0</td>
<td>3.3</td>
<td>1.5</td>
<td>2.43</td>
<td>3.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.30</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4/5</td>
<td>4</td>
<td>11.3</td>
<td>3.4</td>
<td>1.6</td>
<td>2.51</td>
<td>3.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.30</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4/6</td>
<td>5</td>
<td>11.7</td>
<td>3.5</td>
<td>1.6</td>
<td>2.58</td>
<td>3.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.30</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4/7</td>
<td>6</td>
<td>12.0</td>
<td>3.6</td>
<td>1.7</td>
<td>2.66</td>
<td>3.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.30</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4/8</td>
<td>7</td>
<td>12.3</td>
<td>3.7</td>
<td>1.7</td>
<td>2.73</td>
<td>3.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.30</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4/9</td>
<td>8</td>
<td>12.7</td>
<td>3.8</td>
<td>1.8</td>
<td>2.80</td>
<td>3.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.30</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4/10</td>
<td>9</td>
<td>13.0</td>
<td>3.9</td>
<td>1.8</td>
<td>2.88</td>
<td>3.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.30</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4/11</td>
<td>10</td>
<td>13.3</td>
<td>4.0</td>
<td>1.9</td>
<td>2.95</td>
<td>3.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.30</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4/12</td>
<td>11</td>
<td>13.7</td>
<td>4.1</td>
<td>1.9</td>
<td>3.02</td>
<td>3.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.30</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4/13</td>
<td>12</td>
<td>14.0</td>
<td>4.2</td>
<td>2.0</td>
<td>3.10</td>
<td>3.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.30</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4/14</td>
<td>13</td>
<td>14.3</td>
<td>4.3</td>
<td>2.1</td>
<td>3.18</td>
<td>3.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.30</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Objective 1: Measured Soil Moisture

• Treatment 1 – Irrometer Watermark
• Treatment 2 – Decagon GS1 → 5 sensor depths
• Treatment 3 – Weekly irrigation

• Cotton, sandy clay loam – Bossier City
• Soybean, silt loam – Winnsboro
• Soybean, cracking clay – St. Joseph
Objective 1: Measured Soil Moisture

- Measured soil moisture

![Graph showing soil moisture content over time and depth](image-url)
Objective 1: Results

• Comparison of soil moisture sensor estimates and soil water balance
 • 2016 Cotton on sandy clay loam
Objective 1: Results

- Comparison of soil moisture sensor estimates and soil water balance
 - 2016 Cotton on sandy clay loam

Actual Irrigation Events = 2
Predicted Irrigation Events = 2
Objective 1: Results

• Cotton on sandy clay loam
 • Planted on May 11, 2016
Summary

• Hypothesis: A soil water balance can be used to schedule irrigation in the mid-south

Objective 1: Develop a basic decision tool to determine when to trigger furrow irrigation events based on plant water requirements for agronomic crops

Objective 2: Determine the availability and quality of publically available ETo and rainfall data for use in the decision tool
Objective 2: Available Data

- LSU AgCenter Weather Station Network - LAIS
Objective 2: Available Data

- ASCE Standardized ETo Equation
 - Temperature
 - Relative Humidity
 - Solar Radiation
 - Windspeed

\[
ET_{ref} = \frac{0.408\Delta(R_n - G) + \gamma \frac{C_n}{T + 273} (e_s - e_a)u_2}{\Delta + \gamma(1 + C_d u_2)}
\]
Objective 2: Atmometer Study

Red River Research Station
Bossier City, LA

Dean Lee Research Station
Alexandria, LA
Objective 2: Results

- Red River Research Station, Bossier City, LA
 - Cumulative totals
Objective 2: Results

- Red River Research Station, Bossier City, LA
- Daily summary

![Graph showing ETo (in) over dates from 3/19 to 8/13 in 2019, with lines for Atm1 ETo, Atm2 ETo, Atm3 ETo, and WS ETo.]
Objective 2: Results

- Dean Lee Research Station, Alexandria, LA
- Cumulative totals
Objective 2: Results

- Dean Lee Research Station, Alexandria, LA
 - Daily summary
Objective 2: Results

- Rainfall comparison to weather station

<table>
<thead>
<tr>
<th>Date (2019)</th>
<th>WS Rainfall (in)</th>
<th>Measured Rainfall (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

44.1 in - 26% vs 35.1 in
Summary

• The soil water balance may be a good, free option for timing irrigation events. Considerations include:
 • Soil characteristics that affect infiltration and soil water holding capacity
 • Best used on a healthy soil system
 • Availability of good ET and rainfall estimates

• Still determining the quality of economical localized ETo and rainfall estimations
 • May need to adjust crop coefficients to handle higher ETo measured by atmometers
 • Localized rainfall estimations still very important
Summary

• Next steps

 • Estimate ETo and rainfall using NOAA data collected from around the state to determine data availability and quality

 • Estimate ETo using alternative equations for comparison to atmometers

 • Expand atmometer study to include more irrigated regions
Thank you!

Questions?

Stacia L. Davis Conger, Ph.D. E.I.T.
LSU AgCenter
State Irrigation Specialist
Red River Research Station
Bossier City, LA

sdavis@agcenter.lsu.edu
318-741-7430 ext. 1105
Twitter: @geauxwater
www.facebook.com/geauxwater
https://lsuacstamp.blogspot.com/