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Abstract. Precision Agriculture (PA) as a conceptual framework for farming operations responds to the 
need to manage inter-field and intra-field variability on farms, within watersheds, regionally and 
internationally. How PA is used, the objectives involved, and the technologies that support it have 
changed substantially since the inception of modern PA in the 1980s when the U.S. Global Positioning 
System (GPS) became available for public use. Coupled with geographical information system (GIS) 
computer technologies that were first developed for satellite imagery, PA became a mainstream tool for 
farmers to plan site-specific agricultural operations, early on including fertilizer application, followed by 
seeding rate, seed variety, pesticide spraying and now site-specific irrigation. Equipment with GPS 
steering and position-aware supervisory control systems allowed pre-determined site-specific 
prescription maps to be downloaded into equipment and used, for example, to turn off a spraying system 
as it passed over a waterway. GPS-enabled harvesting equipment produced yield maps that were some 
of the first data to be used for site-specific management, often with confusing results due to a lack of co-
varying field data and adequate decision support systems (DSS) based on how soil spatiotemporal 
properties influence plant development. This kind of passive and indirect PA has evolved, however, to 
provide more capable solutions that, for example, provide for variable rate application of fertilizers 
based on georeferenced soil sampling that leads to prescription maps of fertilizer need. Or for another 
example, spatially variable irrigation management based on 30-m resolution maps of crop water use 
based on multi-satellite sensor fusion. Many of the more successful PA technologies involve on-board 
sensor systems that feed data to embedded computing platforms that make on-the-fly adjustments to 
equipment. Such active and direct PA systems use modern technology that provides the ability, for 
instance, to turn spray equipment on in the presence of weeds and off otherwise, or to turn on variable 
rate irrigation nozzles where abiotic stress sensors indicate crop water stress. Such supervisory control 
and data acquisition (SCADA) systems rely on algorithms based on sophisticated understanding of 
biophysics and biological systems. Today the confluence of computing power, data acquisition and 
management infrastructure, new modeling paradigms, and spatial decision support systems ushers in 
new possibilities for PA. Providers of PA services now include government institutions from national to 
local levels, private providers (often using publically available data from government ground, aerial and 
satellite sensing systems), university extension systems and farmer cooperatives. Sources of data range 
from public domain to private data held by farmers or third parties. Questions around data standards, 
data sharing, data ownership, and public and private rights add further complexity to modern PA, but 
are actively being addressed by both public and private institutions. 
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Introduction 
 
The basic premise of precision agriculture has been around since the first farmer decided to plant here, 
not there, to graze this area not that area, to irrigate that field not this one; and later on grew in 
complexity as farmers selected land races for specific environments. For example, farmers in West Africa 
have a wide variety of land races of sorghum and millet, some of which thrive in the wet lowlands while 
failing in the dry uplands, and vice versa. Similarly, farmers in the rice lands of Mali in the inland delta of 
the Niger River have a variety of rice landraces, some adapted to deeper flooding and planting in lower 
elevations and some adapted to less or intermittent flooding and planting at the upper edges of planting 
areas. Judicious selection and planting of these varieties helps farmers there grow rice successfully 
without terraforming to create level rice paddies, and allows considerable rice production despite inter-
annual variations in flooding depth.  
 
Site-specific water management likewise found its genesis in the selection of areas for drainage to 
ameliorate waterlogged soils and the sizing of fields and basins for irrigation according to the perceived 
infiltration rates in specific parts of the landscape. Because they create structures that persist over long 
periods and because the land areas affected are relatively large, these irrigation and drainage design 
practices are not recognized as precision agriculture, even though they are site specific and often based 
on precise topographic and geophysical data. Mapping of irrigation systems dates back at least to 
ancient Babylonia, almost 4,000 years (Fig. 1). With the advent of GIS, GPS and modern sensing and 
irrigation application systems, attitudes about the role of irrigation systems in PA are now changing. 
 
Modern PA began in the 1980s when the GPS became available for public use. Coupled with GIS 
computer technologies, PA became a mainstream tool for farmers to plan site-specific agricultural 
operations. Equipment with GPS steering and position-aware supervisory control systems allowed 
application prescription maps to be downloaded into equipment, for example to turn off a moving 
irrigation system as it passed over a rock outcrop. GPS-enabled harvesting equipment produced yield 
maps that were used for site-specific management, often with confusing results due to a lack of co-
varying data on soil and landscape properties and lack of adequate decision support systems (DSS) 
based on how soil spatiotemporal properties and landscape influence plant development.  
 
Many of the more successful PA technologies involve on-board sensor systems allowing on the fly 
adjustments to equipment, for example to turn spray equipment on in the presence of weeds and off 
otherwise, or to turn on variable rate irrigation nozzles where abiotic stress sensors indicate crop water 
stress. These supervisory control and data acquisition (SCADA) based systems are multiplying rapidly 
and include systems that automatically thin fruit tree blossoms according to bloom density as a system 
moves through an orchard. Key to these PA systems are wireless data transmission, wireless sensor 
networks and the internet-of-things (IOT) in which every sensor is a georeferenced node in a larger 
network, and in which subnetworks are integrated into the internet. Although many successful SCADA 
systems rely on wireless sensor networks and georeferencing, many are not IOT enabled, although the 
potential exists. As systems are connected to the internet, issues of data ownership, already extant, 
become even more prevalent. 
 



Today the confluence of computing power, data acquisition and management infrastructure, new 
modeling paradigms, and spatial decision support systems ushers in new possibilities for PA. For 
example, satellite data, initially not deemed useful for PA due to poor temporal and spatial resolution, 
are now used in computational systems that fuse data from satellites with different spatial and temporal 
resolutions and with different spectral imagers to provide daily evapotranspiration maps with 30-m 
resolution (Anderson et al., 2017). Providers of PA services now include government institutions, private 
providers (often using publically available data from state and federal government on-the-ground, aerial 
and satellite sensing systems), university extension systems and farmer cooperatives. Sources of data 
range from public domain to private data held by farmers or third parties. Questions around data 
sharing, data ownership and public and private rights add further complexity to modern PA. The IT 
sphere now has such importance to PA that some see PA as, “a suite of IT based tools which allow 
farmers to electronically monitor soil and crop conditions and analyze treatment options” (Aubert et al., 
2012). 
 
 

 
Figure 1. Map on clay tablet of canals and irrigation systems west of Euphrates. Named are Euphrates 
and three canals. Lengths, widths and depths of the canals are given. Source: The Schøyen Collection, 
MS 3196, http://www.schoyencollection.com/24-smaller-collections/maps/map-irrigation-ms-3196. 

(visited on 4 Sept 2017). 

http://www.schoyencollection.com/24-smaller-collections/maps/map-irrigation-ms-3196


Examples of PA 
 
There are essentially two paradigms for PA: (1) A passive/indirect method in which data are 
collected/assembled to produce maps of various state variables, which are then used to guide PA; and 
(2) An active and typically direct method in which sensor subsystems are parts of SCADA systems that 
process the data using algorithms to guide control of machinery for input and practice applications. 
These SCADA systems typically embody a DSS, often one that automatically generates a spatiotemporal 
prescription for action, which can likewise, but not necessarily, be automatically applied. Examples of 
the first paradigm include the numerous private and public organizations, including large agribusinesses 
such as Monsanto/Bayer, Cargill and John Deere, as well as a plethora of smaller businesses, that are 
involved in collecting high resolution spatiotemporal data from farms, evaluating the data, and providing 
value-added services that promise to increase yield, optimize input use and increase profitability and 
sustainability through spatially- and temporally-varying application of agricultural inputs and practices. 
Examples of the second paradigm include sensor feedback systems, such as herbicide sprayers, fertilizer 
application systems, and plant and soil feedback based irrigation systems, which automatically acquire 
sensor data, analyze the data to determine actions, and direct machinery to carry out the actions. 
 
Prescription Fertilization. Site-specific fertilizer application was the earliest widely adopted example 
of PA practices in the US, and typically still follows the passive/indirect paradigm. Presently, the 4R 
concept (Right source, Right rate, Right time, Right place) is used to both promote and explain the 
importance of precision fertilizer management for increased nutrient use efficiency and decreased 
environmental impact (Sposari and Flis, 2017). In 2016 the USDA Economic Research Service (ERS) 
reported that nearly half of U.S. corn and soybean growers used GPS yield monitoring, greater than 20% 
used yield maps, and 16-19% used GPS soil fertility mapping (Schimmelpfennig, 2016). Of these, 20% 
used variable rate fertilization; but this practice was applied on 26% of corn and 34% of soybean acres, 
which indicates that adoption was greater on larger farms. Since 2011, yearly surveys of agricultural 
retail service providers by Purdue University showed increasing adoption of GPS soil mapping, yield 
monitoring and soil bulk electrical conductivity (EC) mapping (Erickson and Lowenberg-Deboer, 2017). 
Soil sampling with GPS mapping is more highly adopted than other practices and is closely tied to 
adoption of variable rate fertilizer application (Griffin et al., 2016); both farmers and dealers report 
positive returns on investments in PA fertilizer practices and equipment (Erickson and Lowenberg-
Deboer, 2017). PA fertilizer practices are most commonly applied to corn, soybean and wheat in the US 
(Snyder, 2016).  
 
Despite much research on the use of optical sensors of canopy reflectance for guiding fertilizer 
applications, this is still considered an advanced and emerging technology that is most often used later 
in the growing season to guide supplemental fertilizer applications (Snyder, 2016). While N-sensors may 
improve profitability by preventing over- and under-fertilization, the literature reports mixed results 
(Ondoua and Walsh, 2017). Like other methods, PA nitrogen fertilization guided by sensors fails when 
something other than N (most commonly water) is limiting. As with other PA technologies, the 
availability of precision application equipment outstrips the availability of DSS and the multiple sources 
of data required to make DSS reliable and the outcomes of following DSS-based application 
prescriptions successful. 
 
Prescription Irrigation. A recent example in site-specific variable-rate irrigation (VRI) is the Irrigation 
Scheduling Supervisory Control and Data Acquisition (ISSCADA) system of Evett et al. (2014) (Fig. 2). This 
is an example of the active/direct PA paradigm. Motivated by the rapid increase in pressurized irrigation 



systems amenable to control in the US, and designed to work with linear move and center pivot 
irrigation systems that cover 65% of U.S. irrigated lands, this system uses plant sensors mounted on the 
irrigation system lateral pipe to scan plant water stress in the field and produce maps prescribing 
variable rate irrigation according to stress level (O’Shaughnessy et al., 2015).  
 
 

 
Figure 2. The sensing, information management, prescription mapping, irrigation control, and plant 

feedback loop for an Irrigation Scheduling Supervisory Control and Data Acquisition System that 
directs a variable rate center pivot irrigation system to apply water when, where and in the 

quantity needed. 
 
 
A subset of sensors is fixed in the field for reference stress sensing and soil water sensors are buried to 
provide feedback on irrigation effects in the soil. Data from all crop and soil sensors and from weather 
sensors is automatically collected wirelessly by an embedded computer at the irrigation system pivot 
point. Novel algorithms allow conversion of plant stress measurements taken at one time of day in a 
specific location in the field to a diurnal curve of plant stress, which is then converted to an integrated 
crop water stress index for the day. This process is repeated for each control zone, producing a map of 
crop water stress (Fig. 3, Left). Control zones may be as small as 2 degrees of arc with radial increments 
defined by adjacent pairs of crop sensors pointing at the control zone from opposite sides (to control for 
sun angle and sensor zenith angle effects). The crop water stress map is converted into a prescription 
map defining irrigation amounts for each control zone (Fig. 3, Right), which may automatically guide the 
irrigation system, or be modified by the irrigation manager before automatic application. The infrared 
thermometer sensors and sensor network were commercialized from research prototypes 
(O’Shaughnessy et al., 2013), and the soil water sensors were also developed with a commercial partner 
(Evett et al., 2015; Schwartz et al., 2016). This amounts to a 3R system for irrigation: Right place, Right 
amount, and Right time; and it results in improved crop water productivity for several field crops in the 
U.S. Great Plains (cotton, maize, sorghum, soybean) (O’Shaughnessy et al., 2016). 



 

 
Figure 3. (Left) a crop water stress map produced from canopy temperature data acquired by a 
wireless infrared thermometer system deployed on a center pivot irrigation system lateral. The 

lower left half of the field was fallowed. (Right) An irrigation prescription map automatically 
produced by the ISSCADA DSS system from those data. 

 
 
The ISSCADA system puts the PA sensors, IT system and application equipment in the hands of the 
producer. Although it can make use of secondary data such as SSURGO (NRCS, 2017) soil mapping units 
or soil EC maps to fine tune prescriptions, it doesn’t require them.  
 
A contrasting PA irrigation system is the newly developed “pixelated” irrigation management system 
used in vineyards in California (Semmens et al., 2015; Xia et al., 2016).  This system is of the 
passive/indirect type. Data from multiple satellite remote sensing platforms is fused to produce daily, 
30-m pixels of surface temperature and reflectance, which  are combined with local microclimate data 
to produce evapotranspiration (ET—crop water use) data (Anderson et al., 2012; Cammalleri et al., 
2013, 2014). In trials in California, daily 30-m data of vineyard ET were used to manage vineyard 
irrigation systems, reducing spatial variation of crop water status and yield, and improving crop quality. 
Expected operational products of this USDA-ARS-NASA collaboration, called GRAPEX, include datacubes 
of daily ET at 30-m resolution for selected growing areas (Fig. 4). E.J. Gallo Co. has developed a toolkit 
for using ET datacubes to determine the start of the irrigation season and weekly irrigation 
recommendations (Fig. 5). As a result of this work, ARS developed an ET toolkit that has been used in 
South Dakota, Maryland, Nebraska, North Carolina, and elsewhere to help solve site specific water 
management problems (Sun et al., 2017; Yang et al., 2017a,b,c) 
 



 
Figure 4. From left to right: California state-wide daily ET image at 400-m resolution, detail of the 

Napa Valley, same detail of the NAPA Valley but at 30-m resolution, and a closer look at a few 
vineyards and other fields at 30-m resolution. 

 
 

 
Figure 5. ET datacubes are made available at daily time steps in near real time and with 30-m 

resolution in targeted growing areas. E.J. Gallo has developed a toolkit for using ET datacubes to 
determine the start of the irrigation season and weekly irrigation recommendations. 



 
 
PA for Other Specialty Crops. Specialty crop production, including grapes, accounts for greater than 
38% of U.S. crop value production (USDA-NASS, 2015), and tree fruit production accounts for 39% of 
that production (USDA-NASS, 2014). But specialty crop production is labor intensive and thus costly, 
while labor availability varies inter-annually. Fruit thinning is one of the most costly steps in production, 
but ensures profitable production through optimal fruit size and quality. The same is true for crops such 
as lettuce, which is why precision planting and thinning systems are also being increasingly developed 
and put into practice in the US (Shearer and Pitla, 2014), and new ones are being developed (Lyons et 
al., 2015).  
 

A new paradigm for PA – G × E × M 
 
The consideration of plant genetics, environmental factors, and management practices in research on 
sustainable farming systems has led to the paradigm of G × E × M research (Hatfield and Walthall, 2015), 
which harkens back to the very beginnings of farmer recognition of environmentally-adapted land races 
and the management practice of spatial sensitivity in planting them. The G × E × M paradigm also looks 
forward to new technologies of rapid plant breeding; big data sets that include spatial and temporal 
landscape, soil, plant and weather data; and modern computing power applied to data analysis, 
agroecosystems modelling, and development and application of algorithms for decision making in the 
near term and even real time. 
 
USDA-ARS is using the G × E × M paradigm and is extending it with a post-harvest component that 
relates strongly to the first three through yield quality, value and the production system’s relationship to 
socioeconomics: G × E × M × S. The paradigm is a key part of USDA-ARS’s Long Term Agroecosystem 
Research (LTAR) network research plan and is taking hold in other ARS national programs due to its 
power to guide research objectives to outcomes that are productive for stakeholders because it takes 
into account the entire farming operation and physical and hydrologic landscapes. These outcomes are 
naturally realized through PA because of its power to manage inputs in relation to the crop and 
environment in space and time to produce the crop yield and quality desired.  
 
Because G × E × M × S research pulls in large amounts of interrelated environmental, genetic, 
management and yield and quality data, it produces large data sets that are well suited for use in 
developing and testing simulation models and sub-models of several kinds – crop growth and yield, 
canopy and cover development, canopy reflectance-emittance-temperature, soil water balance and 
plant water uptake, energy and water balance, and so forth. While crop simulation models are 
notoriously unreliable for real-time, site-specific prediction (e.g., Webber et al., 2017), the use of near 
real-time data assimilation techniques can render them sufficiently accurate for management purposes, 
with the added advantage of being able to predict at least short term future outcomes of applied 
management practices. When used with data assimilation, simulation models become the basis for PA 
decision support systems. 
 
The accuracy and usefulness of simulation models is also improved through use of large data sets in 
multi-model comparison studies that explore the reasons for model inaccuracies and lead to model 
improvements (Liu et al., 2016; Webber et al., 2017). The Agricultural Model Intercomparison and 
Improvement Project (AgMIP, http://www.agmip.org/) is demonstrating how G × E × M datasets can 

http://www.agmip.org/


lead to better understanding of model deficiencies and to model improvements (e.g., Maiorano et al., 
2017; Pauli et al., 2017; Wang et al., 2017). This international research effort is strongly supported by 
UKaid and USDA, plus a variety of in-kind contributions by universities and other organizations 
internationally. Although not directly intended to support PA, the potential for AgMIP to improve PA 
DSS is clear, particularly when improved models are combined with wireless sensor networks. 
 

Role of IT, including “big data” 
 
 Data standards for Information Technology (IT). A primary problem with data that could 
be used in PA DSS is that data follow either one of many disparate data standards that exist today, or no 
accepted standard at all. For example, a datum as simple as soil water content has no meaning for crop 
management unless one knows at what depth the reading was taken, the support volume for the 
reading, where the reading was taken, and what the error limits of the datum are. Similarly for crop 
canopy temperature data, which may be used to guide irrigation, a datum has no utility for that purpose 
unless one knows whether the view was oblique (and at what angle) or nadir, the zenith angle it was 
taken at, the time of day and day of year (sun angle effects), the area covered, the crop growth stage 
(for estimation of soil background interference), and the error limits. Beyond these data characteristics, 
users need to know units of reported measurements; the metadata should include details of what was 
actually measured as well as what was reported. For example, many soil water sensors report 
volumetric water content, but none measure that; they measure either in the frequency or time 
domains; and knowing which can tell the user a lot about data reliability. We are living in a data Babel – 
shades of ancient Babylonia. 
 
Application of data standards and data management plans are not keeping up with the Internet cloud 
and the IOT that encompasses rapidly burgeoning wired and wireless sensor networks. Traditional 
sources of environmental data—national weather networks (daily, subdaily); state and regional weather 
networks (daily and often subdaily); and hydrologic networks--are being surpassed by new soil moisture 
networks; ecosystem and agroecosystem research networks; satellite platforms (biweekly to daily and 
subdaily); data fusion systems applied to satellite data; genomics and plant breeding programs; ad hoc 
and commercially proprietary sensing and data manipulation networks; etc. 
 
Nonetheless, bright spots are emerging. The USDA-ARS LTAR network has adopted data standards, 
including metadata standards, similar to those of EPA and USGS. All U.S. federal government data 
standards are transitioning to the ISO suite of standards; ISO 19115 and its accompanying standards will 
replace prior standards as the official metadata standard for U.S. federal agencies. Data management 
planning is now required for all USDA-ARS research projects, and for those funded by USDA National 
Institute of Food and Agriculture (NIFA), as well as most other federal agencies. In the commercial 
sector, AgGateway (http://www.aggateway.org/), a non-profit with greater than 230 member 
companies, is a leader in PA data standards, including the SPADE (Standardized Precision Ag Data 
Exchange) project creating standards for data exchange between farm management systems and field 
equipment. Its Precision Ag Irrigation Language (PAIL) project sets standards for field data used to 
develop irrigation management plans, operate irrigation equipment according to plans, and record the 
results (Ferreyra et al., 2017). AgGateway works with standards groups, including GS1, ASABE, AEF, OAGi 
and USDA.  The AgGateway Global Network is a non-profit recently formed to expand the successful 
AgGateway collaborative framework outside the US. 
 

https://www.gov.uk/government/organisations/department-for-international-development
http://www.aggateway.org/


Because of the rich, rapidly expanding and changing commercial sector of data providers, interpreters 
and users, data standards are key for interoperability of the sensors, IT systems, DSS and SCADA systems 
that provide value in the agricultural market through mechanized PA. Many potential partners inhabit 
this space: USDA, universities and cooperative extension, NOAA, NASA, USGS, DOE, NEON, FLUX-NET 
and many others. Turning potential to actual partners is the business of an ad-hoc consortium of many 
players, including commodity groups, Farmers Business Network, Field to Market, Ag Data Coalition, Ag 
Gateway, Open Ag Data Alliance, and private data integrators. Because a substantial part of these data 
are collected using systems that farmers own, or are observations made using government resources 
that relate directly to privately owned land, issues of data ownership and  privacy arise. Some U.S. farm 
groups have suggested that USDA become the repository for such data, with appropriate privacy 
safeguards in place.  
  

Future directions in research and technology transfer 
 

Research 
Almost every aspect of agricultural research has some application in precision agriculture. Geostatistical 
investigations of soil and plant attributes have long been established, but inclusion of temporal 
variations involves the application of ever more sophisticated models of plant growth and yield in 
response to the environment, management and dynamics of water and nutrients. As noted previously, 
supercomputing holds promise for not only the more deterministic simulation modeling approaches, but 
also for investigation of overall system behavior and identification of key variables through hypercube 
data analyses by means of network analysis methods. 
 
AgMIP is one example of ongoing research needs in agricultural modeling (Rosenzweig et al., 2013); and 
it has yielded new insights into the need for not only better simulation models but also better data to 
support the development and testing of those models. For example, of 46 models tested, none was 
consistent in accurately simulating crop ET using high quality data sets. Since ET is a key covariate with 
yield, and one that is sensitive to climate forcing, it is of great interest to get this right. And because data 
are increasingly available at appropriate spatial and temporal resolutions for in-field management, the 
potential application to PA is clear. 
 
There is much yet to be done in the development of sensors that can help identify plant biotic and 
abiotic stresses more accurately and quickly, at low cost and with low power consumption. The 
assembling of these sensors into wireless networks that are themselves low cost and low power yet 
reliable over long distances is a continuing challenge, but greatly aided by technology coming out of the 
smart phone industry. New wireless data transmission protocols and commercial systems are 
announced almost weekly. Increasingly, agricultural research requires true interdisciplinary teams that 
include crop physiologists, soil scientists, computational scientists, proximal and remote sensing 
scientists, agricultural and biological engineers, and electrical engineers. Such teams will be needed to 
develop the next generation of more capable GPS-guided SCADA systems for PA. 
 
Unmanned aircraft (UA), also known as unmanned aerial vehicles (UAV), are increasingly used for crop, 
pest and irrigation systems management in the US. There were more than 1.1 million UAs in the US in 
2016, and the FAA estimates that number will at least triple by 2021. Commercial UAs numbered 
approximately 42,000 in 2016 and are expected to number at least 442,000 by 2021—and may number 
as much as 1.6 million. Rules and waivers are in place to allow UA use in agriculture. Low cost UAs are 



the result of a confluence of miniaturized electromechanical technologies similar to those that allow 
low-cost wireless sensor networks: microelectromechanical systems (MEMs) sensors (gyros, 
accelerometers, etc.), GPS modules, low power-long range (LoRa) radios, and multi-band cameras. 
Thanks to a competitive smart phone market, these technologies have become very inexpensive and 
small, yet powerful. Research progress is rapid in both university and private venues, aided by an open-
source community sharing computer code such as DIY Drones (http://diydrones.com/), and by 3-D 
printers for rapid prototyping and production, also with an open-source user community. Code for 
image stitching, orthogonal correction and image processing is readily available. While imaging fields is 
increasingly easy and inexpensive, even on a daily basis, there are continuing impediments to progress 
in delivering useful PA DSS. These include sensor calibration, image correction, image analysis and 
reliable decision support generation software. However, in many cases images are directly useful, for 
example in showing problems with an irrigation system, or a pest incursion. 
 
While most wireless sensor networks operate with sensors above ground or embedded in the soil 
surface, there is increasing interest in sensing networks beneath the soil surface that can characterize 
the state and dynamics of chemical, physical and biological aspects of the rhizosphere. An upcoming 
National Science Foundation-sponsored workshop on the “Subterranean MacroScope” will focus on the 
many problems involved in developing the needed sensors and communications networks 
(https://ime.uchicago.edu/subterranean_macroscope/). Disciplines involved include microbiology, 
genomics, biochemistry, plant and microbial physiology, physical chemistry, biophysics, soil physics, 
MEMS, microfluidics and electrical engineering. 
 

Technology transfer 
The commercial sector is increasingly involved in PA technical transfer because most PA technologies 
are too complex for on-farm development. Manufacturers are involved in every phase to produce and 
market sensors and sensor network systems, build SCADA systems into agricultural equipment and 
produce and sell the equipment, often through dealers who to varying degrees take on the role of 
system support. This is also true in the development and marketing of new crop varieties that fit 
environmental and management scenarios and may be useful in PA planting systems. Commercial 
entities are increasingly active in the provision of actionable PA data and prescriptions to farmers. 
Companies such as Climate Corporation assemble data from multiple public sources (Landsat and other 
satellites, NOAA weather data, NRCS SURGGO soils data, etc.) and use large computing systems and 
statistical analysis to deliver recommendations. Many companies are providing aerial imagery at high 
resolution and in multiple visible and infrared light bands to guide PA farming, although data 
interpretation and decision support still are a work in progress. 
 
NGOs are increasingly providing assistance for PA. Trade Industry groups such as the Irrigation 
Association provide certified training at their annual meetings and via webinar. Scientific societies are 
involved through their meetings and outreach to the commercial sector. For example, the American 
Society of Agronomy is currently developing a Precision Agriculture specialization within its Certified 
Crop Advisor (CCA) training program that reaches several thousand crop consultants in North America. 
 
Cooperative extension also plays a role. In the US, cooperative extension was the predominant paradigm 
for transferring technology to farmers in the 1900s. Today, extension is hampered by budget cuts and to 
some degree cut out of the picture due to the expanding role of commerce. There are still valid roles for 
extension however, in conducting public trials of new PA DSS technologies, running publicly accessible 

http://diydrones.com/
https://ime.uchicago.edu/subterranean_macroscope/


demonstration farms, developing cost-benefit analyses of technology adoption, and publishing guides 
on new technologies. 
 

Keys to Future Success 
A 2016 Roundtable hosted by USDA-ARS’s Office of International Research Programs and the 
International Society of Precision Agriculture identified 10 keys to ensuring successful DSS for PA (Yost et 
al., Submitted): 

• Increase research documentation of PA outcomes 
• Enhance funding for PA research 
• Facilitate public-private partnerships 
• Develop more IP-neutral relationships between public and private research 
• Improve involvement of NGOs and others in PA research and application efforts 
• Generate more PA projects that encompass the four goals of sustainable agriculture 
• Achieve better balance between basic and applied research, short and long term funding, and 

small versus large grants 
• Include more stakeholder involvement and retrospective assessments 
• Enhance research relevance to smallholder farms, especially internationally 
• Continue regular roundtable discussions 

 
While these higher level concerns are certainly important considerations, it will be the constant process 
of developing and testing sensors and sensing networks, IT systems and software, and control systems 
and application hardware, coupled with a robust and open user community, that develops useful PA DSS 
and application technologies. 
 

Conclusion 
 
The fundamentals of precision agriculture were employed thousands of years ago in manual fashion, but 
it is only since circa 1980 that GPS technology has allowed easy and efficient mapping of soil, landscape 
and crop properties that can be used to guide precision application of practices and inputs. Originally 
conceived as a passive/indirect process of first measuring and mapping the state variables of interest, 
then using the map to make decisions about PA practices, PA today involves practices using a mix of the 
older paradigm and a newer one of active and direct response to variations in crop and environmental 
properties detected using sensor networks, often wireless, and often on the go. The definition of what 
PA is has been greatly widened by the availability of inexpensive, wireless and often mobile sensors, 
coupled with modern IT, sophisticated algorithms for data processing and decision support, and 
computer control systems guiding machinery to apply practices and inputs. Renewed focus on sensors 
of soil chemical, physical, biological and microbiological properties in the rhizosphere, and ways to 
wirelessly transmit data out of the soil, promise to engender the next generation of sensing systems for 
guiding PA. The great increase in data from private and public sources is opening up new avenues for 
both PA research and application. Simulation model improvements are proceeding and future models 
promise to be competent enough to be the internal engines of PA decision support systems, particularly 
if they are made self-correcting through assimilation of data from the plethora of internet-of-things  
sensors. Because most PA technology will be manufactured and made available to farmers through 
retailers, technology transfer is steadily moving from the public to the private sector, but there remains 



a place for public sector technology transfer, both from research to commercial production, and by 
extension services field testing, demonstrating and analyzing the economics of the new technologies. 
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