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Abstract Forecast climate data sets are increasing in their role in planning models for 

water resources. Irrigation scheduling models use solar radiation, air temperature, 

humidity, and wind speed to calculate reference evapotranspiration. The objective of the 

research was to determine the error caused by using forecast climate data in an 

irrigation scheduling model.  Daily National Weather Service (NWS) forecast climate 

data was acquired for locations in New Mexico where an automated weather station was 

located.  Monthly bias of measure-forecast data increases by a factor of 2 when the 

forecast time increases from 24 hours to 120 hours. Yearly maximum temperature bias 

ranged from -0.2 to -1.3 degrees C. Evapotranspiration monthly bias ranges are positive 

and range from 0 in the spring to 0.4 mm/day in midsummer. The main difference 

between forecast - measured   reference evapotranspiration is caused by the 

overestimation of wind speed.   
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Introduction  

The quality of climate and atmospheric data sets has been become more important now 

that they are being used in planning and prediction models for water resources, 

evapotranspiration calculations, and air-quality issues. This raises the priority of 

understanding spatial and temporal variability of the measured and predicted climate 

parameters.  Ideally, the spacing between adjacent climate stations to measure these 

climate parameters should be such that the error in interpolating climate values for an 

intermediate station is comparable to the instrumental error at any single station.  The 

recommended spacing for temperature measurements ranged from 160 km for uniform 

terrain to 15 km for non uniform terrain along the coast where climate conditions change 

rapidly (Linacre, 1992).  Microclimate influences on temperatures observed at nearby 

(horizontally and vertically) U.S. Climate Reference Network stations were potentially 

much greater than influences that might be due to latitude or elevation differences 

between the stations (Gallo, 2005).  

The climate element and the time period of the average of the data also affect the spacing 

to obtain a given accuracy (Wilmott et al., 1991; Hubbard, 1994a; Snyder et al., 1996; 
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Ashraf et al., 1997 ). Based on an analysis of climate data from the High Plains (Hubbard, 

1994a), a 60 km spacing is required to explain 90% of the variation between sites for 

maximum daily air temperature. For minimum temperature, relative humidity, solar 

radiation, and potential evapotranspiration, that spacing reduces to 30 km, and for wind 

speed and precipitation, spacing of 10 km and 5 km are required, respectively. Spacing 

requirements varied with the time of year. Using the NWS Cooperative Observers 

Network, Greco and Smith (2011) determined that in more than 80% of the United States, 

the climate stations need to be less than a radius of 33 km from each other to resolve air 

temperature climate variability to within 5 degrees C for a 30-year normal mean monthly 

air temperature.  Consequently, care must be taken in spacing climate stations and in 

using climate-station data to calculate reference Et or growing degree days over areas 

greater than 30 km.  Forecast data from the NWS forecast office (Saha et al., 2006) is 

now available on a 2.5 km grid.   Reference Et calculate from forecast climate data minus 

reference Et calculated from the measured CIMIS climate network (CIMIS, 2009) 

showed a percent difference on a year-time scale that ranged from -8% to 31%, with the 

largest error in San Diego on the coast of California and the smallest error of -1% in the 

San Joaquin valley in the center of California (Senay et al., 2008).  The grid size of the 

forecast data used in the study was 100 km.   

 

Automated station output must have quality control software (QC) that finds and corrects, 

or estimates, missing and bad data.  The standard quality control software (QC) involves 

the use of multiple stations where a station’s data is compared to the data from 

neighboring stations (Wade, 1987; Gandin, 1988; Eischeid et al., 1995; Hubbard, 2001).  

Thus, bad data can be replaced using various statistical approaches (e.g., multiple 

regression, Eicheid et al., 1995; linear regression, Hubbard et al., 2005). Often, the 

corrections are inverse distance-weighted interpolations using surrounding stations 

(Guttman, 1988; Wade, 1987). Camargo (et al., 1998) determined that seven years of data 

are needed to stabilize the variation between stations in order to develop models to 

replace missing data based on surrounding data.  

The objective of the research was to determine if forecast data could replace missing 

measured data or replace measured data entirely in an irrigation scheduling model and 

still result in acceptable accuracy in scheduling irrigation dates. 

 Materials and Methods 

Forecast data is available from the NWS Real-Time Mesoscale Analysis (RTMA), which 

is a gridded analysis of the meteorological variables (NOAA. 2011). The forecast system 

model is described by Saha et al. (2006). It produces a 12 km grid of data over the entire 

United States four times a day for temperature, dew point, relative humidity, wind speed, 

wind direction, and sky cover for every hour up to five days in advance.  The RTMA on 

the NWS website has interpolated data to a finer grid (2.5 km) and hourly time step.  This 

interpolated data can be obtained by a user by entering a latitude and longitude or 

selecting a map location (NWS forecast climate data, 2009). The data was captured 

starting in September 2010 using a python software package (Figure 1) from the 2.5 km 
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grid and hourly interpolated data for locations where five automated climate networks are 

maintained in New Mexico (Table 1).  

 Mott (et al., 1992) describes the NMSU automatic climate network. The METAR 

automated stations are located at airports and represent the average of a two-minute time 

just before the hour, not the average for the entire hour, as is the case for the other 

automated networks (METAR Surface Weather Observations, 2011). Snotel is a high-

elevation automate climate network operated by NRCS to measure both snow depth and 

climate data, and the climate network is described by Schaefer and Werner (1996).  

RAWS is a Remote Automated Weather Stations system maintained by the National 

Interagency Fire Center with most of the stations located on BLM land (RAWS, 2011). 

The NMSU Vineyard Network is a subset of the NMSU climate network and has a 

design similar to that network but is operated by the vineyard extension specialist.  

  

Network name  Number of station  and 

description of  

instrumentation and data 

logger  

Description map of station 

location in New Mexico 

METAR – airport 

weather  stations  

(METAR Surface 

Weather Observations, 

2011) 

28 station, precipitation, 

wind speed at 10 m height, 

barometric pressure, air 

temperature and due point 

temperature.  

 

NMSU State Climate 

Network  

(Mott et al., 1992)  

 

17 stations measure 

precipitation, 

temperature/relative 

humidity, wind speed at 3 m 

height and direction, solar 

radiation, soil temperature. 
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NMSU Vineyard 

Network  

 

Six stations measure 

precipitation, 

temperature/relative 

humidity, wind speed at 3 m 

height and direction, solar 

radiation, soil temperature.  

 

NRCS Snotel Weather 

Station – weather 

stations to measure 

snowpack 

(Schaefer and Werner,  

1996) 

 

21 stations measure snow 

water content, precipitation, 

snow depth, air 

temperature.   

 

RAWS – Remote 

automated weather 

stations maintained by 

National Interagency 

Fire Center  

(RAWS  2011) 

48 stations measure wind 

speed at 2 m height, 

precipitation, barometric 

pressure, soil moisture, air 

temperature/relative 

humidity, solar radiation. 

 

Table 1. Automated climate networks measure climate data in New Mexico. 

Both measured and forecast databases were written to a database management system 

that allows importation of the data with different units into a common database. For each 

forecast location and weather station location, the mean and standard deviations were 

calculated for the climate variable of interest on a monthly basis. If missing data from 

either data set occurred, then that day was excluded from the analysis.  The biases were 

calculated using Equation 1.   

The mean bias of the forecast data to measure data is Equation 1. 

 MBIAS= 
N

measuredforecastN

i 1
     (1)               

Consequently, two databases were created, one for measured data and one for forecast 

data predicted one day into the future. The climate data then was used to calculate 

reference evapotranspiration (Eto) (Equation 2) using the standardized penman Monteith 

equation (Allen et al., 2005).  
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The Penman Monteith equation described by Allen is:  

:  

   0.408∆ (Rn –G) + γ [900/ (T+273)] U2 (es-ea) 

  Eto =         (2) 

    (∆+γ) (1+ 0.34U2 ) 

 

Where:  ETo = (mm day
-1

)
 

Rn =net radiation at the crop surface (MJ m
-2

 day
-1

). 

G =soil heat flux density (MJ m
-2

 day
-1

). 

T =mean daily air temperature at 2 m height (°C). 

U2 =wind speed at 2 m height (m s
-1

). 

es =saturation vapor pressure (kPa). 

ea =actual vapor pressure (kPa). 

es - ea =saturation vapor pressure deficit (kPa). 

∆ =slope vapor pressure curve (kPa °C
-1

). 

γ  =psychrometric constant (kPa °C
-1

). 

In the case of solar radiation, the NWS day light hours average cloud cover forecast data 

was used to adjust the calculated clear-sky radiation to actual daily solar radiation (FAO 

24) because the forecast model does not predict hourly or daily solar radiation levels.  A 

second daily solar radiation product produced by NASA also was downloaded from the 

Internet (NASA 2011) and was used to replace the calculated total daily solar radiation 

from the forecast cloud-cover data and clear-sky calculated solar radiation. This solar 

radiation satellite data is available on a grid of 1 degree latitude by 1 degree longitude 

(approximately 100 km grid).  The computed solar radiation data (Flashflux 2010) comes 

from the Terra and Aqua (Modis) satellite (Stackhouse  et al., 2008). The Modis solar 

radiation data has a reported bias of plus 2.25%. 
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Figure 1. Flow chart of Python based NWS data capture and processing software 

package.  

 

In Las Cruces, NM, two Campbell weather stations were set up side by side to evaluate 

the error between two measured climate stations.  

The forecast data were compared to the automated climate METAR –airport weather 

stations station using the NWS analysis presented on its website for the entire United 

States.  The meteorological variables evaluated by the NWS (NWS, 2010) are:  

 Maximum highest temperature observed from 7 a.m. to 7 p.m..  

 Minimum temperature lowest temperature observed from 7 p.m. to 8 a.m. .  

 The ambient temperature observed at 2 meters above ground level.  

 Relative humidity: computed from the ambient temperature and dew point 2 

meters above ground level.  

 Wind speed at 10 m height. 
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Results and Discussion  

Because the NWS also used the METAR data to calibrate the forecast model, this 

comparison between measured and forecast data sets represents the best forecast data for 

those sites and is the standard against which to compare the other automated weather 

station data set.  The NWS (NWS, 2010) reported that the 12 Greenwich Mean Time 

forecast showed decreased accuracy as the forecast data moves into the future with the 

first 24 hours having the best prediction compared to the measured METAR data for the 

entire United States (Figure 2). Figures 2, 3, and 4 were derived from data presented by 

the NWS website: http://www.weather.gov/ndfd/verification/.  Because the bias 

calculation consists of over and under predictions of measured data, the absolute error 

will be larger than the bias, but the bias data gives information about the monthly or 

yearly error that will occur when calculating heat units, or evapotranspiration using the 

forecast data. Generally in agriculture, the daily error is not as important as the weekly, 

monthly, or seasonal error or bias because the climate data is used for a region, and 

spatial location within that region also can cause errors in daily values for a region but are 

consistent when averaged over time (Senay et al., 2008).   The average over the years of 

maximum absolute error (MAE), was 1.29 C for 1,321 sites in the United States, and it 

increased to 2.03 C for a forecast 108 hours into the future (NWS, 2010). The mean bias 

calculated increased with the forecast into the future (Figure 2) with the bias being 

positive from July to January and negative from February to May, with a yearly average 

biomass of -0.05 C.  Similar values of MAE and bias were determined for minimum 

temperature forecast versus measured data (not shown).   The distribution of the absolute 

error and bias around the sites throughout the United States is consistent in all regions 

during the summer.  In the winter, a higher increase in MAE of 1.1 degrees C occurs in 

the north-central states (see maps at http://www.weather.gov/ndfd/verification/), but the 

biases are the same around the United States.  
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Figure 2.  Bias of maximum air temperature in degrees Celsius calculated by the National 

Weather Service for 1,221 airport locations.    

The hourly humidity bias also increases with forecast time (Figure 3) but has a cyclic 

nature unlike the temperature bias, which steadily increases with time. 

 

  

Figure 3.  The hourly humidity-bias percent changes with increasing forecast time in the 

future is calculated by the National Weather Service for 1,221 airport locations.  

The wind-speed forecast data at a height of 10 m had a bias that increased with forecast 

time but still was small (0.5 m/s).  However, the forecast model also predicts a wind 

speed at a height to 2 m, which has a much higher positive bias, as is discussed later in 

this paper.  
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Figure 4.  The hourly wind-speed (m/s) bias change with increasing forecast time in the 

future is calculated by the National Weather Service for 1,221 airport locations.   

In general, the forecast error and bias for all of the climate variables are similar across the 

United States, with only the north-central states requiring more careful analysis before 

using the forecast data in place of measured data.  Because more errors occur in the 

future, the latest forecast for the current day should be used to predict the climate for the 

next day, and that forecast data should be used in any crop or irrigation simulation model.  

The latest forecast run in any given day will depend on the location of the desired 

simulation.  Consequently, the latest run time of day that should be captured will be 

different for East Coast states compared to West Coast states.  All data must be captured 

for the next 24 hours and stored in the database. Because url data is updated hourly 

throughout the day, the time of capturing the data is important.   

The different networks in New Mexico then were analyzed for comparison between  

forecast-measured data, and the yearly comparison of the maximum air temperature for 

the METAR stations only in New Mexico shows a bias of -0.17 C compared the METAR 

U.S. bias of -0.05 (Figure 5), which is expected when biases are averaged over a larger 

area.  However, the biases between forecast-measured data for the other automated 

climate networks are larger than for the METAR climate network, increasing from -0.38 

for the SNOTEL climate network to -1.3 C yearly bias for the WINE network. The 

largest network is the RAWS network, which has 48 stations and a yearly maximum 

temperature bias of forecast-measure data of 1.1 C. The minimum temperature bias is 

similar to the maximum temperature bias (Figure 5).   

The wind speed in the forecast data, in addition to being interpolated temporally and 

spatially, is interpolated to a 2 m height through the use of a log-wind profile equation 

(Campbell and Norman, 1998).  Consequently, because the roughness length which is a 

function of the vegetation height in this interpolation equation may not represent the 

vegetation condition at the other network sites, the wind-speed bias that is always 
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positive for all networks needs to be adjusted before the data can be used in the 

evapotranspiration equation, or this bias (Figure 5) will lead to an overestimate of 

reference evapotranspiration (results shown later in this paper).  
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Figure 5. Yearly ranking of  maximimum and minimum air temperature and mean daily 

wind speed bias for five climate networks. The SNOTEL network does not have wind-

speed data.  

A complete climate data set, including maximum and minimum daily temperature, 

maximum and minimum daily humidity, average daily wind speed and total solar 

radiation, is needed to calculate evapotranspiration under non water stress conditions  

using the reference Et Penman-Montheith  equation which is scaled for each crop using a 

crop coefficient (Equation 2).  Consequently, only a comparison between forecast and 

measured data for the  networks having a complete climate data set can be conducted. 

These include the RAWS, NWCC and the WINE climate networks. The other networks 

are lacking in one or more measured climate elements needed by Equation 2. Again, 

these represent a reason to use forecast data instead of measured data because many 

automated climate networks are missing one or more climate elements needed to 

calculate the Penman-Montheith equation. Simpler equations to calculate reference Et 

that use only temperature or temperature and solar radiation can be used with these 

climate networks, but research has shown that the simpler equations have more error than 

use of the Penman-Montheith equation.  

The  forecast monthly series deviates from the measured RAWS data more during the 

winter months for temperature and humidity compared to the summer months (Figure 6).  

The bias error for the NWS and WINE data is similar througout the years (Figures 7 and 

8).  However, wind-speed forecast estimates are  more accurate during the winter than 

during the summer months for both RAWS and NWS, and WINE  data sets (Figures 6, 7 

and  8).  The forecast solar radiation determined from the percent cloud cover has a larger 

bias during the summer months compared to the rest of the year for both data sets 

because during the summer months, solar radiation is affected by thunderstorm activity 

where part of the sky is covered with clouds and part is open sky. Consequently, this 

patchy cloud cover results in errors when using the simple regression model of FAO24 to 

reduce clear-sky radiation to cloud cover solar ratiation levels (Figures 6, 7 and 8).  
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Figure 6.   RAWS  climate network monthly biases (forecast-measure from Oct. 1, 2009, 

to Oct. 31, 2010, for the different climate elements and reference ETcalculation.  The 

solar radiation uses the FAO 24 formula or NASA-measured satellite solar radiation.  
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Figure 7.  NMCC  climate network monthly biases (forecast/measure) from Oct. 1, 2009, 

to Oct. 31, 2010.   
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Figure 8.   WINE climate network monthly biases (Forecast-measure from Oct. 1, 2009, 

to Oct. 31, 2010.  

The solar radiation bias for all of the forecast data compared to the measured data is 

reduced when the radiation forecast estimated data is replaced by the measured solar 

radiation data from the Modes Satellite even though the footprint of the product is a grid 

of one degree. The yearly bias decreased from -2.99 MJ/m^2 day to -0.76 for the RAWS 

climate database and from -1.42 MJ/m^2 day to 0.66 MJ/m^2 day for the NWCC climate 

database. The decrease in bias still represents a higher bias than reported by Stackhouse 

et al., 2006 of 2.25% for the same product when comparing forecast-measure data. The 

increased bias is due to the measurement error associated with the use of Licore solar 

radiation instruments in the climate data sets compared to the use of Epply or equivalent 

solar radiation instruments used in the measured data set used by Stackhouse et al., 2006 

when comparing measured to forecast solar radiation data.  

The error in bias for the forecast data compared to measured data must be put into the 

context of the error between two adjacent climate stations.  The bias for temperature and 

wind speed between two climate stations (data not shown) is in the same range as the 

difference between the forecast and METAR climate network (Figure 5). When all of the 

climate elements are combined in the reference evapotranspiration equation (2), and after 

correcting for wind bias, the average yearly bias of the difference between calculated 

daily reference evapotranspiration was two to two-and-a-half times larger for the forecast 

data minus measured data compared to the measured data of two climate stations (Figure 

9). The bias of using forecast climate data goes from a plus bias to a small negative bias 

when wind a yearly wind speed reduction scaling factor is used in the calculations.  Bias  

means that on an average during summer months when reference Et is 8 mm/day, the 

difference in calculated reference Et using two different climate stations located side by 

side is 2% whereas the difference between reference Et using measured  climate data 
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compared to reference Et using climate data from a forecast model is 5% . The error 

doubles during the winter months when reference Et is 4 mm/day (Figure 9).  

 

Figure 9.  Reference evapotranspiration biases for different networks and for two 

adjacent climate stations corrected for the wind bias.  

Irrigation Scheduling Model.  

The forecast climate data was used to drive an irrigation scheduling water balance model 

to predict the evapotranspiration of alfalfa for Las Cruces, NM.  The wind speed was 

corrected by scaling it by 0.56, the same scaling factor as used in figure 9, and the 

resulting daily Et was calculated with irrigation water being applied whenever soil-water 

stress occurred (Figure 10). The forecast data underestimates the Et in July through 

September, indicating that a monthly wind-correction factor should be used to adjust the 

forecast wind speed rather than a yearly correction factor.  During those months, the 

correction factor should be 1.0.  In Las Cruces, the July through September represent 

thunderstorm activity instead of frontal storms that occur during the winter months.  The 

forecast wind data is not overestimated during this time period as it is during the rest of 

the year.  
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Figure 10. Simulated daily evapotranspiration of alfalfa for Las Cruces, using measured 

and forecast climate data.  

Conclusion  

Forecast climate data can be used to replace measured data to be used in agricultural 

support systems requiring climate data. The spacing of climate stations to measure 

climate parameters depends on topography, microclimate, vegetation in the surrounding 

area, and the geography of the area.  Computer-based irrigation scheduling models use 

solar radiation, air temperature, humidity, and wind speed to calculate reference 

evapotranspiration and then schedule irrigation based on the water balance equation.  The 

forecast data has the smallest bias when compared to measured data at METAR sites 

because this data is one of the major data sets used to calibrate the forecast model.  

However, the bias is smaller when comparing the biases over the entire United States to 

the bias of climate variables for New Mexico.  As the climate network switches from the 

federal government-maintained stations to state networks, the bias error increases.  Some 

of the increase could be due to the location of the climate stations, or the bias error could 

be due to poorer maintenance.  Consequently, if funding is available to maintain the 

network and good quality control is performed on the measured data, then measured data 

is preferable to forecast data. Results indicate that monthly bias of forecast-measured data 

increases by a factor of two when the forecast time increases from a 24-hour forecast to a 

120-hour forecast.  Reference evapotranspiration’s monthly bias ranges are positive and 

range from 0 in the spring to 1 mm/day in the middle of the summer for the RAWS 

network and 0-2 mm/day for the irrigated New Mexico Climate Network because of the 

overestimation of temperature, underestimation of humidity and overestimation of wind 

speed.  However, the main difference in reference Et calculations when using forecast or 

measured climate data is caused by the overestimation of wind speed in the forecast 

climate data set. The forecast model is a large-scale macro model and does not represent 
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the small irrigated areas in the valleys of New Mexico but represents the climate 

conditions in the large, surrounding dry-land mesa where wind speeds are high due to 

spares vegetation and consequent less wind surface drag. The forecast model is calibrated 

in the United States using airport data, and in the western United States, airports typically 

are on dry-land mesas, not in irrigated valleys.  If the forecast climate data is used to 

calculate reference Et it in an irrigated scheduling model, then the wind speed needs to be 

adjusted downward.  

Acknowledgements 

This work was supported by the New Mexico Agricultural Experiment Station.  

References 

Ashraf, M., Loftis, J.C., & Hubbard, K.G., 1997. Application of geostatistics to evaluate 

partial weather station networks. Agriculture Forest Meteorology., 84:255–271. 

Allen, Richard Walter, G.I.A., Ellio, R.L., Howe, T.A., Itenfisu, D., & Jensen, M.E. 

Prepared by Task Committee on  Standardization of Reference Evapotranspiration of the 

Environmental and Water Resources Institute of the American Society of Civil 

Engineers, 2005.  The ASCE Standardized Reference Evapotranspiration Equation. 

ASCE, pp. 1-59. 

Campbell, G.S., & Norman, J., 1998. Introduction to environmental biophysics, 2nd ed., 

Springer, p. 286.  

Cimis 2009. California Irrigation Management Information System.  

http://wwwcimis.water.ca.gov/cimis/welcome.jsp. 

Gandin, L.S., 1988: Complex quality control of meteorological observations. Monthly 

Weather  Review., 116:1137-1156. 

Eischeid, J.K., Baker, C.B., Karl, T., & Diaz, H.F., 1995. The quality control of long-

term climatological data using objective data analysis. Journal of Applied Meteorology, 

34:2787-2795. 

FlashFlux, 2010 NASA Flashflux. 

http://flashflux.larc.nasa.gov/common/php/FLASHFlux_References.php. 

Gallo, K.P., 2005. Evaluation of temperature differences for paired stations of the U.S. 

Climate Reference Network notes and correspondence. Journal of climatology., 18:629-

632. 

Guttman, N., Karl, C., Reek, T., & Shuler, V., 1988: Measuring the performance of data 

validators. Bulletin American Meteorological Soc., 69:1448-1452. 



19 

 

Hubbard, K.G., 2001: Multiple station quality control procedures in automated weather 

stations for applications in agriculture and water resources management. AGM-3 

WMO/TD No. 1074, 248page 

Hubbard, K.G., Goddard, S., Sorensen, W.D., Wells, N., & Osugi, T.T., 2005: 

Performance of quality assurance procedures for an applied climate information system, 

Journal Atmospheric. Oceanic Tech., 22,:105-112. 

Linacre, E.. 1992. Climate data and resources: a reference and guide. Roudledge 

Publishing, pp. 1-366. 

METAR Surface Weather Observations. 2011.  

http://www.ncdc.noaa.gov/oa/climate/conversion/swometardecoder.html. 

Mott, P., Sammis, T.S., & Jackson, R. 1992. Automatic weather data collection and 

processing. Computers and Electronics in Agriculture., 7:337-345. 

NASA. 2011. NASA climatology resource for agroclimatology 

daily averaged data. http://earth-www.larc.nasa.gov/cgi-

bin/cgiwrap/solar/agro.cgi?email=agroclim@larc.nasa.gov. 

NOAA. 2011. NOAA National Operational Model Archive & Distribution System  

 http://nomads.ncdc.noaa.gov/ 

NWS forecast climate data. 2009. National weather forecast El Paso area. 

http://forecast.weather.gov. 

NWS.  2010. Verification scores. http://www.weather.gov/ndfd/verification/ 

RAWS.  2011. Remote automatic weather stations. 

http://www.novalynx.com/manuals/nfes-2140-part3.pdf. 

Saha, S, Nadiga, S. Thiaw, C., Wang, J., Wang, W., Zhang, Q., van den Dool, H.M., Pan, 

H.L., Moorthi, S., Behringer, D., Stokes, D., Pena, M., Lord, S., White, G., Ebisuzaki, 

W., Peng, P., & Xie, P., 2006. The NCEP Climate Forecast System. Journal of Climate., . 

19 (15): 3483-3517.   

Schaefer, G.L., & Werner, J., 1996. “SNOTEL into the Year 2000,” American 

Meteorological Society Meeting, 12th Conference on Biometeorology and Aerobilogy, 

Jan. 28 - Feb. 2, Atlanta, GA.  

Senay, G.B., Verdin, J.P., Lietzow, R., & Melesse, A.M.,  2008. Global daily reference 

evapotranspiration modeling and evaluation journal of the American Water Resources 

Association., 44(4):969-979. 

Stackhouse, P.W., Kratz, D.P., Gupta, S.K., Edwards, A.C., Wilber, A.C., Kato, S., 

Doelling, D.R., Geier, E.B., & L’Ecuyer, T. Fast longwave and shortwave radiative Flux 

(FLASHFlux) From CERES and MODIS measurements. 37th COSPAR Scientific 



20 

 

Assembly, Montreal, Canada, July 2008. 

http://flashflux.larc.nasa.gov/common/doc/FLASHFlux_COSPAR2008_title.pdf.  

Stackhouse Jr.,, P.W., Kratz, D.P., McGarragh, G., Gupta, S.K., & Wilber, 2006. 

Deriving fast global radiative fluxes from CERES Measurements: The FLASHFlux 

Project. CERES Science Team meeting, Nov. 1-3,  Hampton, VA.  

http://flashflux.larc.nasa.gov/common/php/FLASHFlux_References.php. 

Wade, C.G., 1987: A quality control program for surface mesometeorological data. J. 

Atmos. Oceanic Tech., 4:435-453.  

Wilmott, C.J., Robeson, S.M., & Feddema, J.J., 1991. Influence of spatially variable 

instrument networks on climatic averages. Geophys. Res. Lett. ,18 (12): 2249–2251. 

 


