

CERTIFICATION PROGRAM

Certified Landscape Irrigation Auditor Examination Equations

Basic and non-irrigation equations and conversions are assumed to be known by candidates. LIA refers to the Irrigation Association <u>Landscape Irrigation Auditor</u>, 3nd Edition (February 2013). The equations are presented in the latest IA format and may appear different from those presented in the reference material.

1 cubic foot of water = 7.48 gallons

1 acre-inch = 27,154 gallons

1 acre-foot = 325,848 gallons

$DU_{lq} = \frac{V_{lq}}{V_{avg}}$	LIA Eq. 4-1
$SM = \frac{1}{0.4 + (0.6 \times DU_{ q})}$	LIA Eq. 4-2
$PR = \frac{96.3 \times Q}{A}$ $A = S_1 \times S_2$ $A = 0.866 \times S^2$ $A = 0.8 \times D_t \times S$	LIA Eq. 4-3b LIA Eq. 4-4 LIA Eq. 4-5 LIA Eq. 4-6
$PR_{net} = \frac{3.66 \times V_{avg}}{t_{R} \times A_{CD}}$	LIA Eq. 4-7
$RT = \frac{D}{PR} \times 60 = minutes$	LIA Eq. 6-1
$K_{L} = K_{T} \times K_{d} \times K_{mc}$ $K_{L} = K_{P} \times K_{d} \times K_{mc}$	LIA Eq. 7-1a LIA Eq. 7-1b

Certified Landscape Irrigation Auditor Examination Equations

$ET_{L} = ET_{o} \times K_{L}$	LIA Eq. 7-2
$RT = \frac{ET_L}{PR} \times 60$	LIA Eq. 7-3
$RT_{upper} = RT \times SM$	LIA – Discussion p. 115
Cycle starts = $\frac{\text{Total run time } \{\text{min}\}}{\text{Time to runoff } \{\text{min}\}}$	LIA Eq. 7-4
$RT_{cycle} = \frac{Total run time \{min\}}{Cycle starts}$	LIA Eq. 7-5
$PAW = AW \times RZ$	LIA Eq. 8-1
AD = PAW x MAD	LIA Eq. 8-2
$PR = \frac{1.605 \times Q_{gph}}{A}$	LIA Eq. 9-1
$PR = \frac{231.1 \times Q_{gph}}{S_{ei} \times S_{li}}$	LIA Eq. 9-2