Use Satellite Imagery to Calibrate Crop Coefficient Kc for Irrigation

James Han, PhD FieldNET Advisor Specialist Lindsay Corporation

Dec. 4th, 2019

Objectives

- Challenges and opportunities
- Vegetation indices based crop coefficient
- Crop coefficient on irrigation management

Challenges

- Conventional irrigation decision making:
 - Real-time field observation (e.g. hand feel soil),
 - Soil moisture probe,
 - Virtual weather
- Satellite imagery:
 - Minimum one day delay, usually several days behind

Challenges

Imagery sources

Satellite	Resolution	Frequency
Landsat 8	30 meters	16 days*
Sentinel 2A/2B	10 meters	5 days*
High resolution	3 meters	1 day (multiple)
*Frequency may vary depending on the location of the field		

Opportunities:

Vegetation indices based crop coefficient

An example:

Materials and Methods

Data source: Two years

Crop type: Corn and Soybean

Location: O'Neil, Oakland, NE

Methods: 3-4 fields for each crop type, collection imageries for season

Results: Vegetation indices include EVI, EVI2, NDVI \rightarrow Crop Coefficient (Kc)

Adjusted VI based Kc vs. reference Kc

2016 corn field vegetation indices

2016 corn field crop coefficient

2016 soybean field vegetation indices

2016 soybean field crop coefficient

2019 corn field vegetation indices

2019 corn field crop coefficient

15

2019 soybean field vegetation indices

16

2019 soybean field crop coefficient

Vegetation indices

- EVI > NDVI > EVI2
- EVI tends to have the greatest value

Crop coefficient Kc

- EVI > NDVI > EVI2
- EVI based Kc has the greatest value while NDVI and EVI2 are similar

The vegetation index and crop coefficient pattern are not limited by a crop type

Calculate the "actual ET" value from soil moisture sensor to compare with the predict ET values from the model to evaluate the adjusted crop coefficient

ET today = (WC yesterday + Irrigation today + Rainfall today) – WC today

Comparison of ET

- EVI based crop coefficient has the greatest value
- Kc driven by EVI has the greatest value, the pattern of EVI driven Kc is consistent
- The calculated ET based on adjusted Kc has a large variation, and it depends on the type of soil moisture sensor been used

Crop coefficient on irrigation management

Use vegetation index based adjusted Kc for irrigation

First, the vegetation index based Kc, is close to the Kc value from FAO 56 for a given day.

Adjusted Kc_initial from 0.3 to 0.4 by imagery

After adjust Kc

- Field Capacity - Refill - Safety Crop Stress Permanent Wilting Point Depletion + Depletion with Irrigation Effective Rainfall

Before vs. after adjusting Kc on irrigation recommendation **ZLIND**

Before adjust Kc

- Total irrigation forecast: 6 inches
- Total Crop ET: **14.9 inches**
- Irrigation rounds: 6

After adjust Kc

- Total irrigation forecast: 6 inches
- Total Crop ET: **15.7 inches**
- Irrigation rounds: 7

After adjusting Kc value based on imagery derived vegetation index, the irrigation recommendation increase 1 more round, with 0.8 inches.

Take home messages:

- Satellite imagery has potential for using on adjustment of irrigation forecasting/recommendation
- The application effectiveness of using satellite imageries may depend on which vegetation index is used and the Kc adjustment timing and magnitude
- Solely depends on satellite imageries for irrigation recommendation is not mature yet. The quality of imageries will affect accuracy (e.g. cloud cover)
- Kc is still the most effective parameter for irrigation scheduling.

Questions?