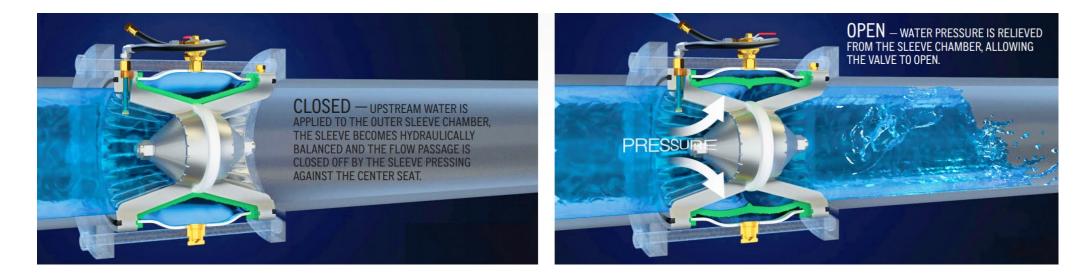
Pressure Regulating Valves

Selection and Installation

Types of Pressure Regulation

- Sustaining
- Reducing
- Combination sustaining and reducing
- Relief


Types of Pressure Regulation

- Sustaining (upstream)
- Reducing (downstream)
- Combination sustaining and reducing
- Relief

Types of Pressure Regulation

- Sustaining (upstream)
- Reducing (downstream)
- Combination sustaining and reducing
- Relief

Automatic, Hydraulic Pressure Reducing Valves

Source: Nelson

Source: Bermad

Castroville, CA – Tape on butternut lettuce

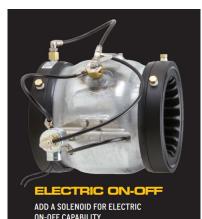
Source: Rivulus

Source: Dorot

- Reduce excess pressures, to:
 - Achieve a target emitter flow rate
 - To avoid over-pressuring pipe/hose/emitter/fitting

- Reduce excess pressures, to:
 - Achieve a target emitter flow rate
 - To avoid over-pressuring pipe/hose/emitter/fitting

- Reduce excess pressures, to:
 - Achieve a target emitter flow rate
 - To avoid over-pressuring pipe/hose/emitter/fitting
- To automatically maintain a target downstream pressure



- Reduce excess pressures, to:
 - Achieve a target emitter flow rate
 - To avoid over-pressuring pipe/hose/emitter/fitting
- To automatically (or not) maintain a target downstream pressure

Wapato Irrigation Project - Farm turnout with butterfly valves

- Reduce excess pressures, to:
 - Achieve a target emitter flow rate
 - To avoid over-pressuring pipe/hose/emitter/fitting
- To automatically maintain a target downstream pressure
- To automatically (without human intervention) open (and regulate) or close via electronic signals from a controller

Nelson electric solenoid control

NMC-PRO

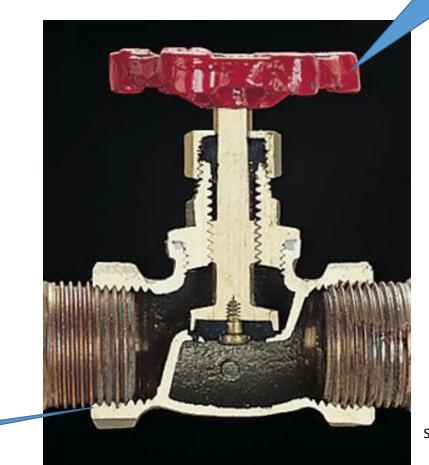
Advanced, multifunctional, modular and robust irrigation controller.

Netafim controller

Key Functions For Today

- On/Off
- Automatic pressure regulation

How Do Valves Work?

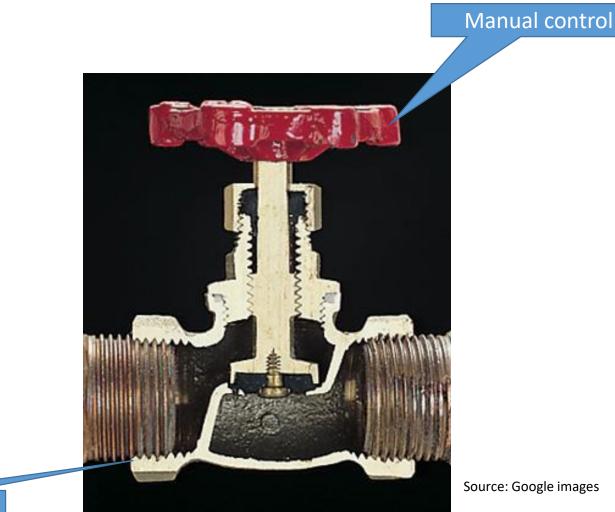

Start with the basics

How Do Valves Work?

Connection

Start with the basics

Manual control


Source: Google images

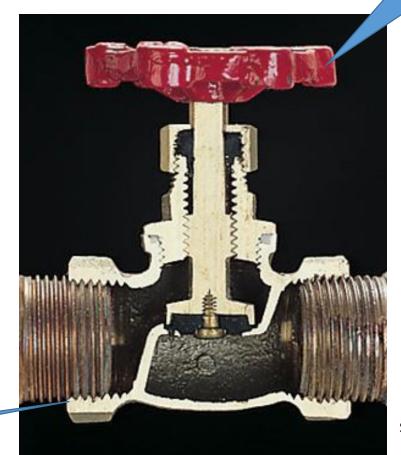
How Do Direct Control Valves Work?

On is "slightly" to fully open

Connection

Off is fully closed

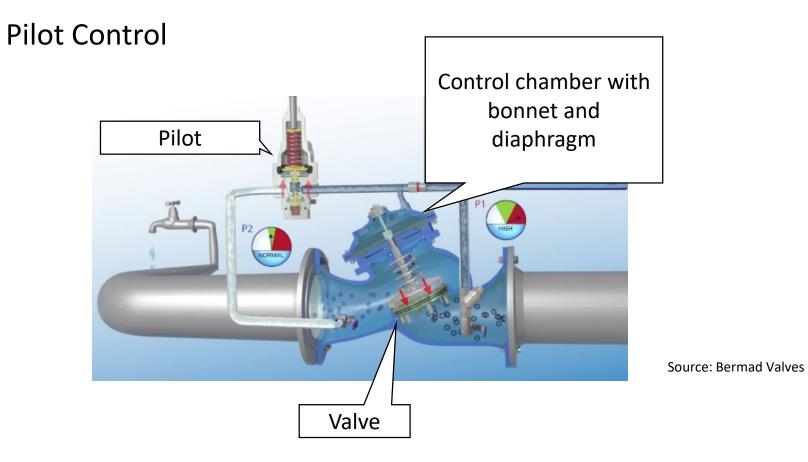
Source: Google images


What Else?

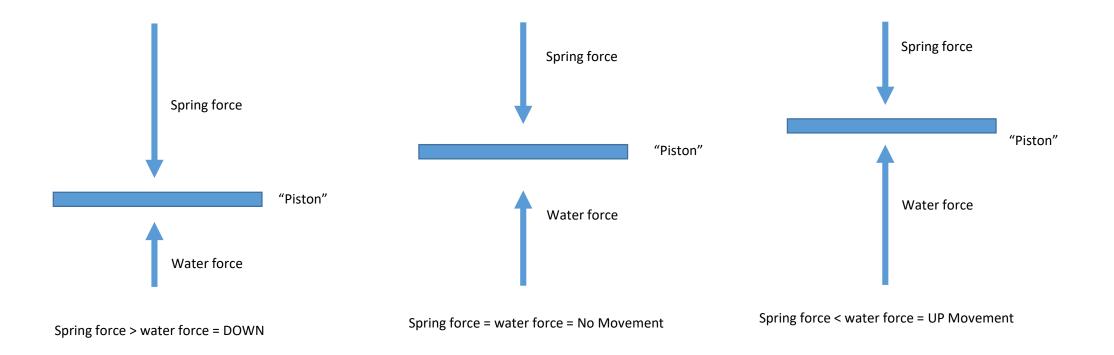
On is "slightly" to fully open

Off is fully closed

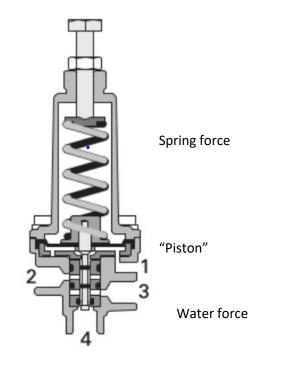
Pressure drop occurs across the valve


Manual control

Source: Google images


Connection

How Does It Work?


Pilot Control

• Indirectly controlling the position of a control valve diaphragm

Pilot Control

• Indirectly controlling the position of a control valve diaphragm

Types of Pilot Control

- 2-way (two positions)
 - Open
 - Close
- 3-way (three positions)
 - Open
 - Close
 - Hold

Key Design Parameters

- Providing enough pressure drop for hydraulic pilot control to work
- Keeping things clean
- Low/High pipe pressures
- Low/High pressure differential

ITRC Research

- Key questions:
 - Variability in outlet pressures with varyingL
 - Test 1: Inlet Pressures?
 - Test 2: Flow rates?
 - Test 3: What is the minimum pressure loss across the valve required for it to function automatically?

ITRC Research

Valve ID	Manufacturer	Distributor	Model	Size	Pilot Type	Pilot Model	Spring Model	Spring P Range (psi)	Diaphragm Type
5-A	Bermad	Bermad	IR-120	6	3-way	PC-X	к	7 to 45	Standard
4-A	Bermad	Bermad	IR-120	4	3-way	PC-X-A-P	к	7 to 45	Standard
4-B	Dorot	Netafim	Series 96	4	3-way	29-100	Yellow	7 to 30	095 (HP)
4-C*	Dorot	Netafim	Series 96	4	3-way	31-310	Yellow	7 to 30	095 <mark>(</mark> HP)
4-D	Dorot	Netafim	Series 96	4	3-way	31-310	Yellow	7 to 30	179 (LP)
4-E	Dorot	Netafim	100	4	3-way	29-100	Yellow	7 to 30	005 (LP)
4-F	Nelson	Nelson	800	4	3-way	Standard	Standard	5 to 50	Standard
4-G	Ooval	Eurodrip	PH0400G001	4	3-way	P-31	Blue	5 to 36	Standard
4-H	Ooval	Eurodrip	ZA04RDA001L	4	3-way	P-31	. Blue	5 to 36	Standard
4-I	Rafael	Jain	RAF-P	4	3-way	РС	Blue	7 to 22	Standard
3-A	Bermad	Bermad	DN80	3	3-way	PC-X-A-P	К	7 to 45	Standard
З-В	Dorot	Netafim	Super Gal	3	3-way	29-100	Yellow	7 to 30	Standard
3-C	Ooval	EuroDrip	ZH3NRDG001	3	3-way	P-31	Blue	5 to 36	Standard
3-D	Rafael	Jain	RAF-P	3	3-way	PC	Blue	7 to 22	Standard

*Two valves tested did not perform well during Test 1; therefore, these valves were not tested further

ITRC Research - Key Findings

- Key findings
 - There is a HUGE difference in the minimum required pressure differential across the valve for good downstream pressure regulation
 - The absolute minimum found was ~2 psi

ITRC Research - Key Findings

- Key findings
 - There is a HUGE difference in the minimum required pressure differential across the valve for good downstream pressure regulation
 - The absolute minimum found was ~2 psi

ITRC Research Findings

• Key findings

- There is a HUGE difference in the minimum required pressure differential across the valve for good downstream pressure regulation
- The absolute minimum found was ~2 psi
- Sometimes more pressure loss is required across the valve than published

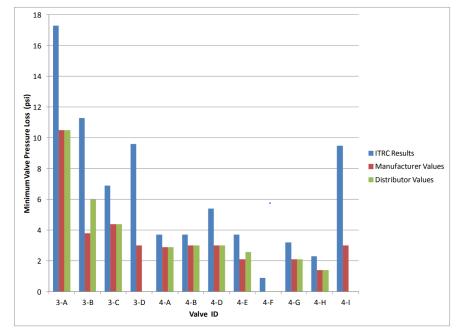


Figure 40. Minimum valve pressure loss (during operation by pilot control) at 13 psi outlet pressure at 400 GPM

ITRC Research Findings

• Key findings

- There is a HUGE difference in the minimum required pressure differential across the valve for good downstream pressure regulation
- The absolute minimum found was ~2 psi
- Sometimes more pressure loss than published is required across the valve
- Some values are better than others at maintaining downstream pressures with varying:
 - Inlet pressure
 - Flow rates

Example: Varying Inlet Pressures

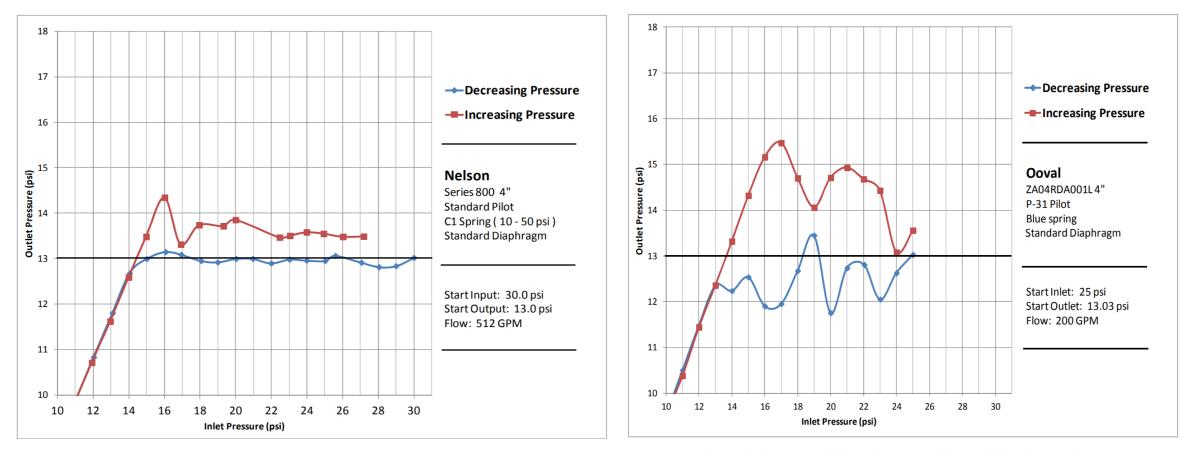


Figure 24. Test 1 - 4-inch Ooval ZA04RDA001L (3-way pilot)

Figure 22. Test 1 - 4-inch Nelson Series 800 (3-way pilot)

ITRC Research Findings

• Key findings

- There is a HUGE difference in the minimum required pressure differential across the valve for good downstream pressure regulation
- The absolute minimum found was ~2 psi
- Sometimes more pressure loss than published is required across the valve
- Some valves are better than others at maintaining downstream pressures with varying:
 - Inlet pressure
 - Flow rates
- 2-way pilots are best suited for:
 - Pressure relief applications
 - Pressure reducing applications where there will always be over 15 psi of pressure loss required across the valve
- 3-way pilots are best suited for:
 - Applications where the pressure