Protect the Heart of the Irrigation System-The Pump

C J PHENE II PRESIDENT EPIPHENE, INC

IRRIGATION SHOW | Dec. 4-5, 2019 EDUCATION WEEK | Dec. 2-6, 2019 Las Vegas, Nevada Co-located with NGWA and ARCSA

EXPLORE. CONNECT. LEARN.

"What gets us into trouble is not what we don't know. It's what we know for sure that just ain't so."

- Mark Twain

Outline

Downhole Pumps - Sand Protection

- Self-Cleaning Suction Screens
- Strainers
- Flow Control Solutions

Car Analogy

- Fuel Filter
- Oil Filter
- Air Filter
- Fuel Injection Nozzles

Downhole Pumps – Why Sand Protection?

- Declining well water levels
- Decreased well production
- Silt and Sand intrusion
- Damage to bowls and impellers

MAIN BENEFITS

INCREASES LIFE OF PUMP UP TO <u>FIVE</u> TIMES MAINTAINS FLOW AND HEAD FOR LONGER

Downhole Pumps – Solutions for Submersibles

Downhole Pumps – Solutions for Turbines

Epiphene, Inc - Copyright 2019

Downhole Pumps – Solutions for both Submersible and Turbine

Important Factors to consider:

- Casing Inside Diameter
- Water Level
- Pump level
- Depth to bottom of well

• Typical Requirements to consider:

- Correct Connections & Approach
- Does the pump have minimum head requirement to operate the downhole separator?
- Does it change during season?
- Does it have minimum of 30 ft to bottom?

Why Self-Cleaning Suction Screens?

- Protect Centrifugal or Close Coupled Turbines from
 - debris,
 - aquatic beasties,
 - and algae

What Are Self-Cleaning Suction Screens?

- Centrifugal
- Close Coupled Turbines
- Video Example

Self-Cleaning Suction – Solutions for both Submersible and Turbine

Important Factors :

- Flow Rates
- Debris Expected
- Inlet Velocities
- Protecting Screen Collapsing & Pump From Cavitating
- Drive Type

• Typical Requirements:

- Always Oversize
- Algae, Fish & Frogs, other debris
- Maximum Inlet velocity .4 fps
- Vacuum Gauge with Switch

• Diesel or Electric

Why Strainers?

- Protects the Pump
- But also protects downstream components
 - Check Valves
 - Control Valves
 - Filters
- Bottomline:
 - Safety Screen

• Rather clean a strainer than chase down issues in downstream components

Epiphene, Inc - Copyright 2019

•

Types of Strainers

Y STRAINERS

BASKET STRAINERS

Design Consideration

Y STRAINERS

- More Flexible Installation
- Flushable
- More turbulence
- Higher Friction Loss

BASKET STRAINERS

- Only installed one way
- Not Flushable
- Less turbulence
- Lower Friction Loss

Types of Strainers

Y STRAINER

Types of Strainers

BASKET STRAINER

BASKET STRAINER

Smaller screen has less surface, reducing flow. Less surface area means screen clogs more quickly. Up to 30% larger screen has more surface area. Flow travels smoothly through more holes. Clogs less.

<u>epiphene</u>

ENERGY SAVING PUMP PROTECTION SOLUTIONS

Conventional Old Y Strainer Same design since 1908

New LPD Y Strainer Designed 2016

Bridge wall restricts flow, increases velocity and increases pressure drop. No bridge wall. Flow is smooth with very low pressure drop.

ENERGY SAVING PUMP PROTECTION SOLUTIONS

Conventional Old Y Strainer Same design since 1908

New LPD Y Strainer Designed 2016

Epiphene, Inc - Copyright 2019

Conventional Old Y Strainer Same design since 1908 New LPD Y Strainer Designed 2016

Strainer – Design Flows

Strainer – Design Flow Comparison

Epiphene, Inc - Copyright 2019

Strainer – Design Flow Comparison

Area Comparison LPD vs Basket Strainer

Strainer – Economic Comparison

Price Comparison LPD vs Basket Strainer

Basket Strainer Cost I LPD Strainer Cost

LPD Y Strainer Energy Savings Calculator

Enter your pipe size	8 •] in.
Enter your flow rate	1255.22	GPM
10	8.05	FPS
Enter your pump efficiency	0.7	%
Enter your motor efficiency	0.9	%
Hours of operation / year	8760	hours
Your cast per kWh	0.17	s
How much debris	1	
Two (2) \$1 bills = 32.05 sq. i	n. T	1
To help visualize the amount of (debris, we use a	1

To help visualize the amount of debris, we use a size equivelent to a US \$1 bill: 16.0254 sg. in. (103.39 sg. cm.)

Here's how they compare

	Old Y Strainer	LPD Y Strainer
Cv*	920	1580
Pressure drop (psi)	2	0.7
Screen area (sq. in.)	387	515
% of clogged area	8.3	6.2
HP required	2.31	0.77
kW required	1.73	0.57
Total kWh	15120.26	5023.71
Annual electricity cost	\$ 2,570.44	\$ 854.03

An LPD Y Strainer saves \$1,716.41 per year

* Cv is the number of U.S. gellons/minute of 60 degF water that will flow through a strainer with 1 psi pressure drop across the strainer.

Why Flow Control Solutions?

- Minimizes Turbulence
- Minimized Friction Loss
- Improves Asset Life
 - Pump
 - Motor
 - Control Valves
 - Check Valves
 - Pressure Sensors
 - Flow Meters
- Pump & Devices Operate at Design

Why Flexible Connector Solutions?

- Minimizes Vibration
- Mitigates Thermal Expansion Issues
- Easier Connections In the Field
- Strain Relief
- Offers some seismic protection

STRAINER & FLOW CONDITIONING REMOVING TURBULENCE

• SUCTION DIFFUSER

• FLOW CONDITIONER

Epiphene, Inc - Copyright 2019

Flow Conditioning "Saving Energy & Assets"

BEFORE

AFTER

BEFORE ELBOW FLOW CONDITIONING REMOVING TURBULENCE

SUCTION DIFFUSER – 2" THRU 16"

Epiphene, Inc - Copyright 2019

Standard Suction Diffuser Flex Configurations

Short Radius Elbow

Long Radius Elbow

Suction Diffuser Flex with 150# plate flanges for connecting to a long radius elbow

Suction Diffuser Flex with 150# plate flange x groove end for connecting to a long

radius elbow

Suction Diffuser Flex with 150# plate flanges with concentric reducer for connecting to a long radius elbow

Suction Diffuser Flex with 150# plate flange x groove end with long radius 90° elbow

Suction Diffuser Flex with 150# plate flange x groove end with concentric reducer for connecting to a long radius elbow

Suction Diffuser Flex with 150# plate flanges for connecting to a short radius elbow

s Suction Diffuser Flex s with 150# plate flange x ort groove end for connecting to a short radius elbow

Suction Diffuser Flex with 150# plate flange with concentric reducer for connecting to a short radius elbow

Suction Diffuser Flex with 150# plate flange x groove end with short radius 90° elbow

Suction Diffuser Flex with 150# plate flange x groove end with concentric reducer for connecting to a short radius elbow

Suction Diffuser Flex with 150# plate flange with 90° reducing elbow

Suction Diffuser Flex with 150# plate flange x groove end with 90° reducing elbow

Standard Vane Flex Configurations

Vane Flex with 150# plate flanges

Vane Flex with 150# plate flange x grooved

Vane Flex with 150# plate flanges with concentric reducer

Vane Flex with 150# plate flange x grooved with concentric reducer

Vane Flex with 150# plate flanges with 90° reducing elbow

Vane Flex with 150# plate flange x groove with 90° elbow

Vane Flex with 150# plate flange x groove with 90° reducing elbow

Vane Flex with 150# plate flange with 90° elbow

Flow Conditioning Rigid Configurations

2" thru 12"

Epiphene, Inc - Copyright 2019

Summary

- Design of Pump Station Impacts System Performance
- Minimization of Turbulence
- Minimization of Friction Loss
- Increased Design Flexibility
- Increased Reliability
- Improved Asset Life
- New Tools exist to address issues
- Economically Viable with Quick Paybacks

