Center Pivot Performance

Troy Ingram Irrigated Cropping Systems Extension Educator Northeast Extension District Howard County Extension CLASSIFICATION: Extension Educator

\$ 308-754-5422

=1

- ĭ troy.ingram@unl.edu
- 612 Indian Street, Suite 1
 Saint Paul, NE, NE
 68873

Irrigation in Nebraska ~8,300,000 Acres (2012 NASS)

EXTENSION

Center Pivot Operation

Span	End of Span (ft)	Acres Within Span	Discharge (GPM)
1	180	2.3	14
2	360	7.0	42
3	540	11.7	71
4	720	16.4	99
5	900	21.0	127
6	1080	25.7	156
7	1260	30.4	184
OH	1310	9.3	56
Total		124	750

Note, 53% of land is under the outer two spans while 2% is under the first span.

Irrigation System Maintenance

Reasons for Checking Your Pivot

- Sprinklers not installed in correct position
- Sprinklers missing
- Sprinklers heavily worn or not operating properly
- Leaks tower boots, drains
- Sprinkler spacing too wide
- Inappropriate sprinklers position for field conditions
- Operating pressure does not match system requirements

Sprinkler not Installed in Correct Position

Sprinklers Missing/Plugged

Missing or Malfunctioning Sprinklers Lead to Nonuniform Water and Chemical Application

Sprinkler Package Issues

Nozzle Chart

	tw104	20	May	2015 LI	NDSAY	, 7	TOWER,	, 700	gpm,	20 psi		PAGE 2
				M	CDDINULED				10771.F			
	(UTLET-	Con	-REG-	PSI	Pog	PM	Model	Plate	SpNo	1	NO22715
	INO	LOC	seb	Moder	Regin	neq	Der	Houer	I LUCC	opno.		
	-x-							PLUG 3				
	4	22.6	22.6	LB15	30.5	0.6	1.3	R3000	Orange	1	#14	Lime
	-x-							PLUG 2				
	7	44.8	22.2	LB15	30.3	1.0	1.3	R3000	Orange	2	#14	Lime
	-x-							PLUG 2				
	10	66.6	21.8	LB15	30.0	1.1	1.3	R3000	Orange	3	#14	Lime
	11	73.9						PLUG				
	12	81.3	14.7	LB15	29.9	1.1	1.3	R3000	Orange	4	#14	Lime
	13	88.8	14 5	TDIE	20 7	1 0	1 2	PLUG	0======	5	#14	Timo
	14	95.8	14.5	TB10	29.1	1.2	1.5	RSUUU	Orange	5	#14	TTILE
	16	110 6	14 8	LB15	29 6	1 3	1 3	P100	Orange	6	#14	Lime
	17	117.9	14.0	DDIO	23.0	1.0	1.0	PLUG	orange			
	18	125.3	14.7	LB15	29.4	1.3	1.3	R3000	Orange	7	#14	Lime
	19	132.8						PLUG				
	20	139.8	14.5	LB15	29.3	1.5	1.6	R3000	Orange	8	#15	Lime w/lav
	21	147.3						PLUG				
	22	154.6	14.8	LB15	29.1	1.6	1.6	R3000	Orange	9	#15	Lime w/lav
	23	161.9						PLUG				
	24	169.3	14.7	LB15	28.9	2.0	2.0	R3000	Orange	10	#17	Lvndr w/gra
	25	176.8						PLUG				
		101 6	TOWE	P NO	1	TN	IT. THE DI	PESSIDE	. 26.2	nei		
		101.0	TOWE	R NO.	T	11	ADTIAD L	ALLOUURL	. 20.2	Por		
	26	182.6						PLUG				
	27	186.8	17.5	LB15	28.7	2.2	2.2	R3000	Orange	11	#18	Gray
	28	194.3						PLUG				
	29	201.6	14.8	LB15	28.6	2.2	2.2	R3000	Orange	12	#18	Gray
	30	208.9						PLUG				
	31	216.3	14.7	LB15	28.4	2.3	2.2	R3000	Orange	13	#18	Gray
	32	223.8	14 5	TDIC	20.2	0 5	2 5	PLUG	0	1.4	#10	Carero as / harma
	33	230.8	14.5	TR12	28.3	2.5	2.5	RSUUU	Orange	14	#19	Gray w/crqu
	35	245 6	14 8	T.B15	28 1	27	27	R3000	Orange	15	#20	Turquoise
	36	252.9	11.0	2010	2011	2	2.1	PLUG	orunge	20	11 20	rargaoroe
	37	260.3	14.7	LB15	27.9	2.7	2.7	R3000	Orange	16	#20	Turquoise
	38	267.8						PLUG				
	39	274.8	14.5	LB15	27.8	2.9	3.0	R3000	Orange	17	#21	Trqu w/yllw
	40	282.3						PLUG				
	41	289.6	14.8	LB15	27.6	3.1	3.0	R3000	Orange	18	#21	Trqu w/yllw
	42	296.9	147	1016	27 E	2 2	2 2	PLUG	0	10	#00	Valler
	43	304.3	14./	TB12	21.5	3.3	3.3	RSUUU	Orange	19	#22	IEITOM
	44	318 8	14 5	LB15	27 3	3.4	3 5	P3000	Orange	20	#23	Vilw w/rod
	46	326.3	11.0	DDIO	2.10	0.1	0.0	PLUG	orange	20	11 40 0	TTTM W/TCG
	47	333.6	14.8	LB15	27.1	3.5	3.5	R3000	Orange	21	#23	Yllw w/red
	48	340.9						PLUG	5-			
	49	348.3	14.7	LB15	26.9	4.1	4.2	R3000	Orange	22	#25	Red w/white
	50	355.8						PLUG				
		360.6	TOWE	R NO.	2	II	VLINE P	RESSURE	: 24.4	psi		
	E 1	201 0						DIUC				
	52	365 8	17 5	TRIS	26.8	1 2	1 2	PIOG	Orango	22	#25	Dod w/white
	53	373.3	17.0	TPT2	20.0	4.2	4.2	PLUG	orange	23	#25	Red w/white
		515.5						1000				

Leaks

Leaky Tower Boots Concentrate Water in Small Areas

- Reduces Pressure in Remainder of Distribution System
- Contributes to Local Runoff Issues

Sprinkler Spacing too Wide

Operating Pressure Does not Match System Requirements

Checking System Pressure

- Check pivot operating pressure with the end guns or corner arm on at the pivot point & at the end of the system at the highest elevation in the field
- System pressure should be maintained at 5 psi above the pressure rating of the regulator
- If pressure is too low uneven water application across the pivot lateral
- If pressure is too high increased energy cost

Pressure Regulators

Pressure Variations Can Result in Application Differences

System Pressure

- Pressure Losses
 - Friction loss in the pipe: 7 12 psi
 - Elevation Change: 10 psi for every 23ft change in elevation
 - System leaks & worn out nozzles
 - Bad pressure regulators
 - Worn out pump

Ratio of Simulated To Design Nozzle Discharge for a Center Pivot

- The field has a 1% slope increasing away from the pivot
- Pivot has 20-psi regulators
- At 35.7 psi, 26% of the length of the pivot lateral (representing 45% of the field) applied less than intended
- At 28.9 psi, 65% of pivot (representing 87% of the field) applied less than intended
- Pivot point inlet pressure less than the design pressure results in an uneven distribution of water

Ratio of Simulated To Design Nozzle Discharge for a Center Pivot

Distance From Pivot Inlet, ft

Variation of Relative Sprinkler Discharges for the Third, Fifth, and Seventh Spans

- Field has a 1% slope (26 ft elevation change in 2640 ft)
- Pivot has 20 psi regulators
- Upslope has 557 gpm & 18.8 psi
- Level has 583 gmp & 16.4 psi
- Downslope has 609 gpm & 14.2 psi

End of System Pressure Study

- Currently have 30 systems being evaluated
- Utilize technology to check/log operating pressure at the end of system
- Need to maintain 5 psi over pressure regulators for even water application

Objectives of Research

- Analyze ~100 systems from across Nebraska
- Identify center pivots with inadequate or excessive pressure
- Quantify impact on application uniformity, yield, and energy expenses
- Recommend Best Management Practices to growers

System Locations

EXTENSION

Analysis of Pivot Pressure

- Data from 31 pivots across Nebraska equipped with AgSense Field Commander monitors
- Data were analyzed and compared to operating pressure and required inlet pressure for regulators
- Pivots operating below pressure were analyzed with topographical data
 Center Pivots Below

Analysis of Pivot Pressure

Analysis of Pivot Pressure

Pressure too Low

Pressure Too Low

Pressure too High

How to Correct Pressure

- Fixing leaks and broken nozzles
- Re-nozzling to smaller or larger nozzles
- Exploring ways to pump more water
 - Speeding up power unit
 - Add a VFD to speed up pump

Questions?

Extension is a Division of the Institute of Agriculture and Natural Resources at the University of Nebraska-Lincoln cooperating with the Counties and the United States Department of Agriculture. University of Nebraska-Lincoln Extension educational programs abide with the nondiscrimination policies of the University of Nebraska-Lincoln and the United States Department of Agriculture.

