Irrigation Association's Soil Moisture Sensor Phase II Virtual Test

Diganta D. Adhikari, David F. Zoldoske, Edward M. Norum, and Joe Oliphant

Center for Irrigation Technology, California State University Fresno 5370 N. Chestnut Ave. M/S OF 18 Fresno, CA 93740-8021 Phone: (559) 278-2066 Fax: (559) 278-6033

Emails: diganta@csufresno.edu , davidzo@csufresno.edu , edwardn@csufresno.edu and joeo@csufresno.edu

<u>Abstract</u>

The Irrigation Association (IA) through its Smart Water Applied Technology (SWAT) effort has been working for the last decade to develop an independent third party testing protocol designed to evaluate control systems that "automatically" adjust irrigation events using either soil moisture sensors (SMS) or climatologically-based controllers. After extensive review and public comments recently, a second testing protocol has been developed, which links SMS response curves to a controller in managing irrigation schedules for six different virtual landscape zones. This protocol is designed to provide a similar test and evaluation method as established with the "Smart" climatologically-based controllers. It is hoped that the performance results of the two different operational platforms can be compared directly. This presentation will discuss the methods and outcomes derived from utilizing the new IA protocol based on SMS response curves as well as issues of compatibility of the "computer interface" used for this test.

Introduction

The overall goal of this project was to verify the efficacy of the IA Soil Moisture Sensor Phase II-Virtual Landscape test. In particular, this project focused on the application of standardized testing protocols on soil moisture sensors operating on different principles (Phase I) and translated it for Phase II Virtual Landscape testing. The evaluation concept used accepted formulas for calculating crop evapotranspiration (ETc) and a weather station on site to estimate the moisture balance, which was used by the controller to achieve efficient irrigation while minimizing potential runoff. There are allowances in this evaluation for variability in soil properties and the inherent problems associated with trying to characterize these problems to scientific instruments.

Proposed Work and Statement of Methodology

Participating manufacturers were required to submit a controller and/or controller interface module along with a data conversion device (computer interface). The data conversion device acted as the interface that accepted the most recent moisture data from the CIT monitoring computer and converted it to a format accepted by the manufacturer's controller under test (see additional details at <u>www.irrigationorg/gov/swat_drafts-soil/</u>).

The Phase II-Virtual landscape included six zones to accommodate a variety of soils, water quality, plant material, slope, temperature, exposure to sun, root zone storage, precipitation rate, application efficiency, and area. The individual zones within the landscape represented a combination of the factors stated above to represent a range of agronomic conditions.

The total accumulated moisture deficit over time was used to measure adequacy while the accumulated surplus of applied water over time provided the system efficiency. Any water applied above the soil water holding capacity was characterized as runoff or deep percolation, which lowers application efficiency.

Smart Water Application T	echnology							
C\CITPROGS\SwatClimate\stands Zone 1	ardclimate.stc Zone 2	Zone 3	1 7	Zone 4	1 7	Zone 5	Ĩ	Zone 6
Sol Lom Vegetation Fescue - 751 ▼ Slope [3] 6 Root Zone 0.85 Precip Rate 1.6 Efficiency 55 Area 1000 C1 0 C2 0 C3 0.3 C4 0.4	Sol Sity Clay ▼ Vegetation Bernuda - Full ▼ Bernuda - Full 10 Root Zone 0.555 Precip Flate 1.6 Efficiency 80 Area 1200 C1 0 C2 0 C3 0 C4 0	Soil Loses 3 Vegetation Ground Cover Stope [3] 8 Procip Rate 1.4 Efficiency 70 Area 8000 C1 0 C2 0 C3 0 C4 0	Soll Vegetation Slope [X] RootZone Peop Rate Efficiency Area C1 C2 C2 C3 C4	Sandy Loam Woody Shubs 12 2	Soll Vegetation Slope [3] Root Zone Precip Rate Efficiency Area C1 C2 C2 C3 C4	Clav Loam Trees & GC 2 225 0.2 80 650 0 0 0 0 0 0 0 0	 ✓ Sol ✓ Vegetation Slope (3) Root Zone Precip Rate Efficiency Aries C1 C2 C3 C4 	Clay • Bernuda - Full • 20 0.55
		Open Save Controlle weather data: 4/8/2010	r Indo	EnorMes	saget		Clear	Stat
Zone Response Station Supplied by CIT	Zones wires Common Conn	and ection	SMS r under Test					Panel & Yulawa Turking
Connection Computer and Software Supplied by CIT for monitoring and record keeping of each zone	RS-232 Connection	Connection (Ma Sensor black bc by ma	interface/ interface/ ix supplied inufacter	pice)				

Figure 1: Schematics and layout of the Phase-II testing.

Results

Controllers from three manufacturers with different SMS operating principles were successfully tested during this beta testing phase and the following data ranges were recorded. (Given the complexities of the test development and small testing sample, it is premature to make comparisons between these beta testing results and results obtained using climatologically based controllers.)

- Irrigation Adequacy: 100 to 73.8 %
- Scheduling Efficiency: 100 to 25%
- Overall Efficiency: 100 to 70%
- Rainfall Efficiency: 100 to 80%

Irrigation Association - Smart Water Application Technology Soil Moisture Sensor Based Controllers

International Center for Water Technology

	Manufacturer	Black Box 1
	Model Number	
E	Serial Number	
Identification	Evaluated By	10
lic.	Date	October 1, 2010 - October 30, 2010
臣	Weather Station	CIMIS 80
P	Reference No.	
τ	Comments	
Project		
P.		

	Parameter	Zone #1	Zone #2	Zone #3	Zone #4	Zone #5	Zone #6
	Soli Type	Loan	Silly Clay	Loany Sand	Sandy Loam	ClayLoam	Clay
	Vegetation	Feccue - 75%	Bernuda - Pull	Ground Cover	Woody Shrubs	Trees & GC	Demuda - Pull
_	Slope, %	6.0	10.0	8.0	12.0	2.0	20.0
Data	Root Zone Stor., in.	0.85	0.55	0.90	2.00	2.25	0.55
	Precip Rais, in.ft	1.60	1.60	1.40	1.40	0.20	0.35
Input	Efficiency, %	55	60	70	75	80	05
=	Aren, 90-Ft	1000	1200	800	800	650	1900
	Soil Intake Rate, in./h	0.35	0.15	0.50	0.40	0.20	0.10
	ASA, in.	0.25	0.16	0.36	0.34	0.26	0.10
	Max. Run Time, min.	12.0	6.6	17.5	34.4	NR.	24.0

Cur. Moist. Bal., in,	0.81	0.18	0.71	1.81	2.25	0.18
Rainfall Eff., %	100.0	100.0	100.0	100.0	82.7	100.0
Overall Eff., %	51.9	56.8	87.4	71.4	35.9	61.8
Soh. Eff., %	94.4	94.6	96.2	95.2	44.9	95.1
In. Adequacy, %	100.0	79.1	100.0	100.0	900.0	73.8
Burplus, in.	0.00	0.00	0.00	6.60	3.61	0.00
Deficit, in.	0.00	0.445	0.00	6.60	0.09	0.58
Effective int, in.	1.38	1.07	1.80	1.40	6.26	0.99
5 Soak Runolf, in.	0.06	0.04	0.07	0.07	0.09	0.05
Direct Runoff, in.	0.00	0.00	0.00	6.60	0.09	0.00
Groes Irr, in. Direct Runoff, in.	2.82	1.84	2.59	2.03	8.06	1.69
Ell. Rainfall, in.	0.62	0.52	0.52	0.62	0.43	0.62
Net Rainfall, in.	0.62	0.52	0.52	0.52	0.52	0.52
Groes Rainfall, In.	0.64	0.64	0.64	0.64	0.64	0.64
ETc, in.	1.79	2.21	1.98	1.43	2.26	2.21
ETo, in.	3.64	3.64	3.84	3.64	3.64	3.64

Figure 2: A typical layout of a performance report.

Conclusion

The Phase II-Virtual Landscape testing technique reduced the testing time to 30 days, or until the minimum rainfall requirement of 0.4 inches and reference ETo of 2.5 inches were met. This could potentially save a considerable amount of time and energy compared to the conventional outdoor irrigation controller tests performed using real vegetative conditions. Further, this model of testing allows for most of the conditions except for ETo and rainfall, to be replicated each time and around the year for the different controllers being tested.

During this phase of testing we were able to resolve/address all the issues related to compatibility of the computer interface and a standardized description for the computer interface and the communication protocol was finalized for future reference. Now that we have a better understanding of how the entire process works, future testing can be conducted using the latest protocol (see the full draft protocol posted at the IA website for additional details).