

Irrigation Technologies

Inge Bisconer Technical Marketing and Sales Manager Toro Micro-Irrigation

For the Irrigation Association's Drought Summit December 9, 2016 Las Vegas, NV

Agenda

- 1. Introduction
- 2. Water and Irrigation Technology Stats
- 3. Benefits of Efficient Irrigation
- 4. Where to Invest?

Toro Irrigation Solutions

Precise. Efficient. Practical.

Inge Bisconer Background

Inge Bisconer, MBA, CID Technical Marketing and Sales Manager, Toro Micro-Irrigation

TORO

- California farm background
- B.S. from UC Davis
- MBA from University of Phoenix
- 35 years in irrigation/water industry
- Past president, California Irrigation Institute
- Past chair, Irrigation Association Drip/Micro CIG
- Member, California Ag Irrigation Association
- Associate Faculty, MiraCosta College
- Author, Toro Micro-Irrigation Owner's Manual
- Presenter, The Grange Network Webinars
- Co-host, The Water Zone radio show
- Recipient of IA's 2016 Industry Achievement Award

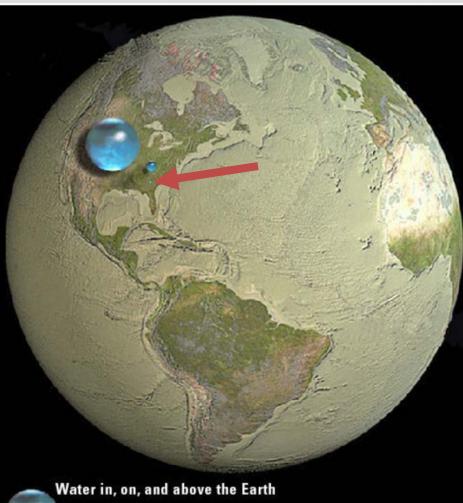
The Toro Company / Micro-Irrigation Division

Toro Irrigation/Micro-Irrigation

- 1. Residential/Commercial headquarters in Riverside, CA
- 2. Agricultural drip headquarters in El Cajon, CA

The Toro Company

TORO


- 1. Founded 102 years ago in July 1914
- 2. World headquarters in Bloomington, MN
- 3. NYSE listed, \$6.3 billion market cap
- 4. 17 locations worldwide, active in 80 countries

Relative Amount of Freshwater on Earth

Liquid fresh water Freshwater lakes and rivers Howard Perlman, USGS Jack Cook, Adam Nieman Data: Igor Shiklomanov, 1993

Where is Earth's Water?

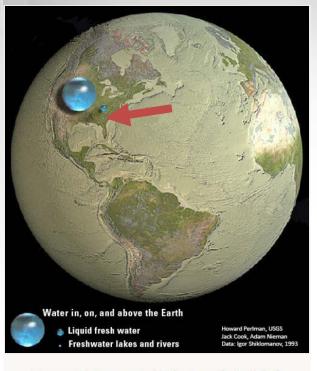
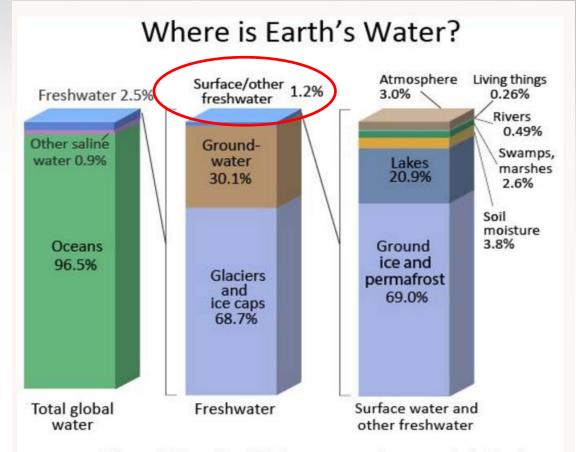
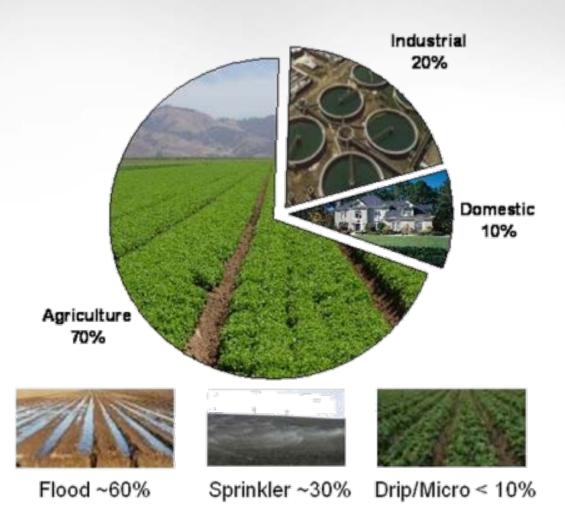



Figure 1: Relative amount of freshwater on the Earth [45]

Source: Igor Shiklomanov's chapter "World fresh water resources" in Peter H. Gleick (editor), 1993, Water in Crisis: A Guide to the World's Fresh Water Resources. NOTE: Numbers are rounded, so percent summations may not add to 100.


Figure 3: Breakdown of earth's freshwater reserves [6]

http://www.watereducation.org/general-information/earths-water-supply

Global Freshwater Withdrawals and Irrigation Methods

Global Freshwater Withdrawals

TORO.

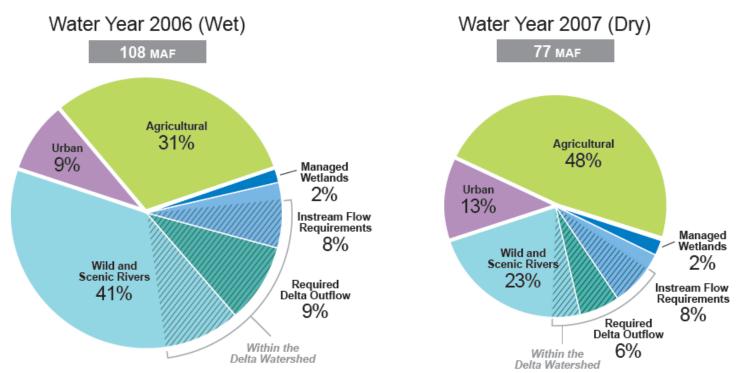
Chipotle

"80% of the Water Consumed in the U.S. is used for Agriculture..."

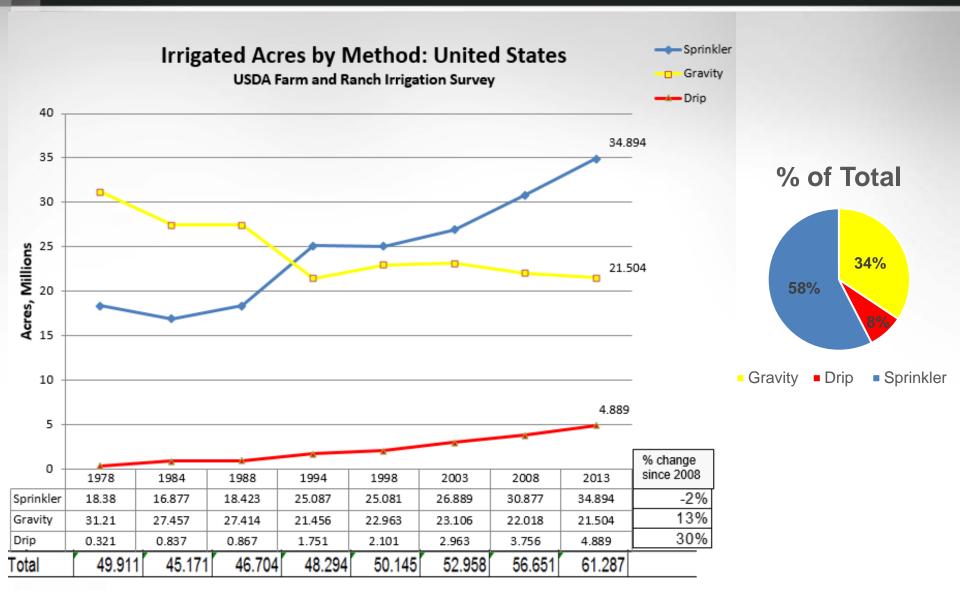
OF WATER CONSUMED THE U.S. IS USED FOR AGRICULTURE, SO WITHING FARMERS CAN DO TO CONSERVE TER GOES PRETTY FAR + EVERYBODY THAT WY RIVER POINT FARMS IN ODE STECHNOLOGIES LIKE DRI WATER THE ONION CROPS THEY GROW THESE SMART SYSTEMS SEND WATER TO THE ROOT MANT TO ENSURE THAT WATER GOES TO THE CROP ITSELF. AND ALSO PREVENTS OVER-WI THERESULT? LESS WATER OUR DELICIOUS MORE WATER FOR YOU TO HEM DOWN

DWR: Where Does California's Water Go?

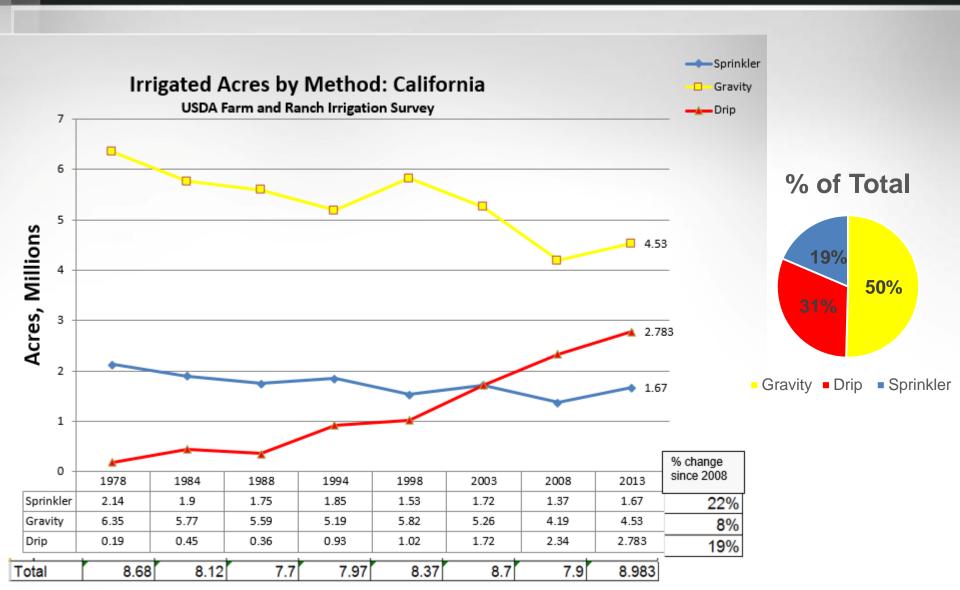
https://mavensnotebook.com/ the-notebook-filecabinet/californias-watersystems/

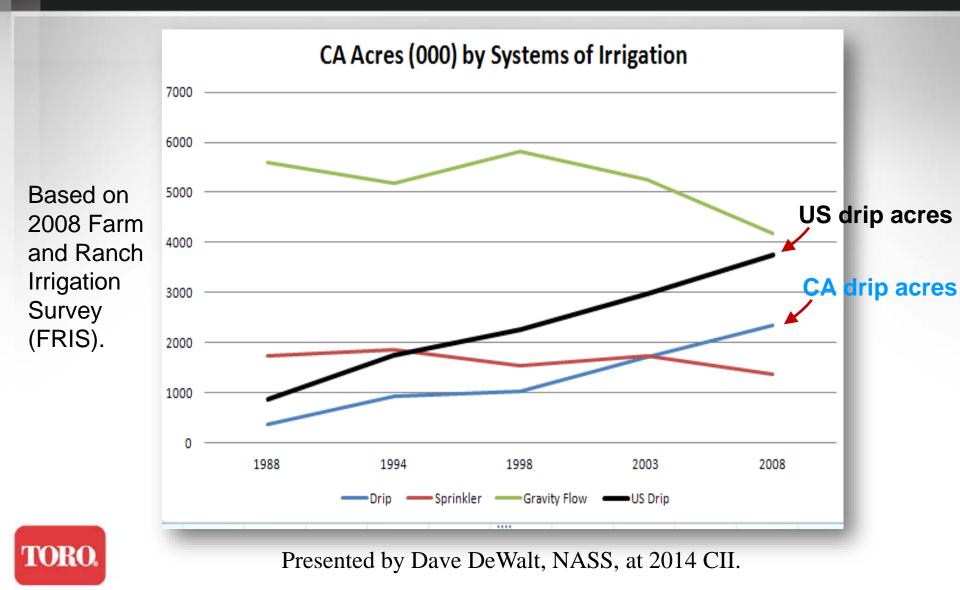

Source: Adapted from DWR 2009, USGS 2010 Delta Plan, 2013, Figure 3-1, Chapter 3, Page 67

DWR: How is California's water used?

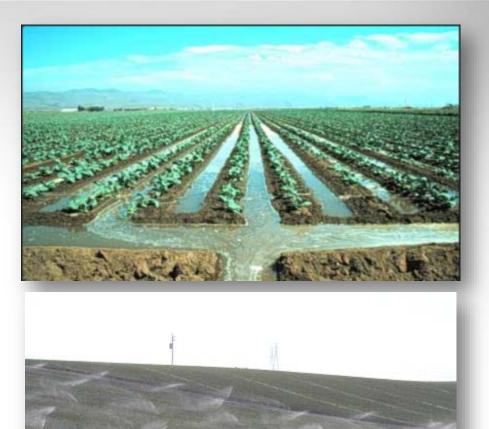


How Water Is Used in California




US Method of Irrigation – 1978 to 2013

CA Method of Irrigation – 1978 to 2013



US Method of Irrigation -1988 to 2008

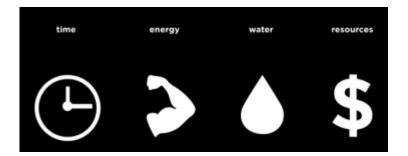
Ag Irrigation Technologies: Drip, Flood and Sprinkler

Other Ag Irrigation Technologies

- Sensing (moisture, weather, solar radiation, temperature, flows, and pressures etc.)
- Automation (in field and off farm)
- Big data (internet of things, NASA, etc.)
- Wireless communication in the field (valves, filters, web or app based information or controls etc.
- UAV and drone usage (aerial imagery)

Water Use Efficiency, WUE

Water Use Efficiency = Yield / Water Input



Resource Use Efficiency, RUE

Resource Use Efficiency = Yield / All Farm Inputs

Flood Irrigation: Uniformity Improvements

Rubicon Farm Connect

Traditional flood irrigation Head o Tail water or runoff 50-60% application Insufficient moisture efficiency in root zone Science & Modelling High-performance surface irrigation Head No tail water or runoff 90-95% application efficiency

2

TORO

Modernised supply infrastructure On demand service, consistent delivery, high flow rates with larger channels and outlets

> Determine time to cut-off, adaptive modelling and reduction of waterlogging

Engineering & Technology

 Automation, sensors, software, communication and hardware

Agronomy & Management Determination of crop water demand and quantitative irrigation scheduling

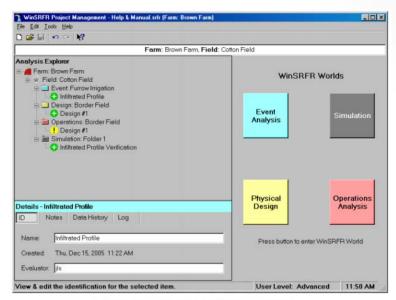
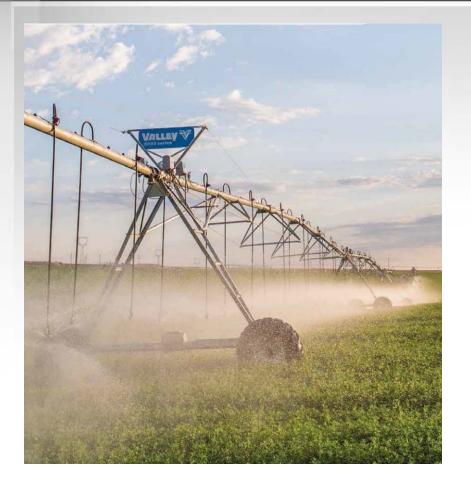
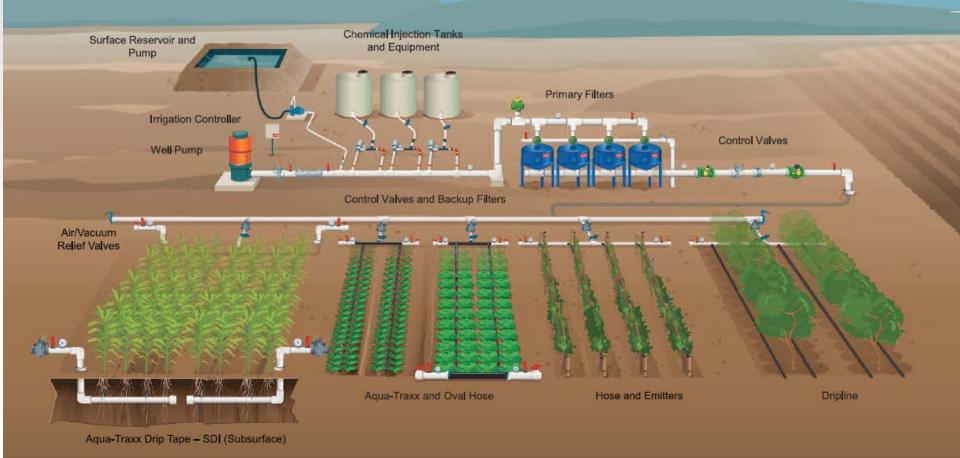



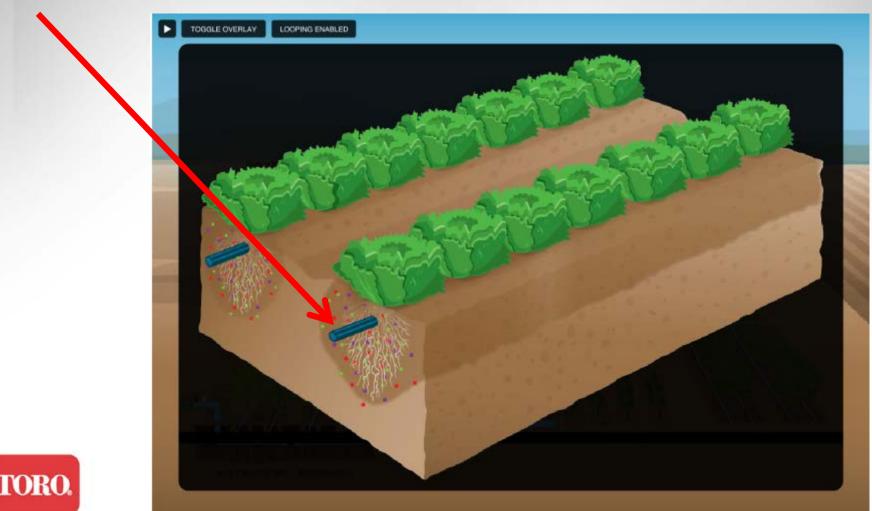
Figure 1.1 - WinSRFR Project Management Window

Center Pivot Irrigation: Uniformity Improvements



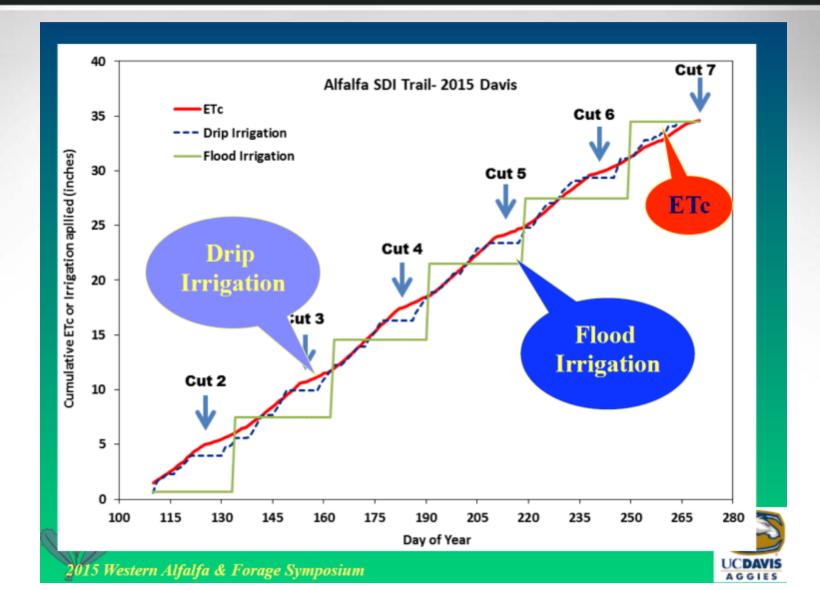
University of California Cooperative Extension Specialist Jeff Mitchell is leading a study of overhead irrigation systems to see how the technology will work in various crops grown in in the Golden State. Results are mostly encouraging for many of the crops studied

http://www.toro.com/en-us/Agriculture/Pages/drip-irrigation-education/drip-system-layout.aspx


Typical Drip System Layout

Copyright @ 2009, The Toro Company

Irrigation Uniformity – Why is it important?


It keeps water and nutrients in the root zone where you want them

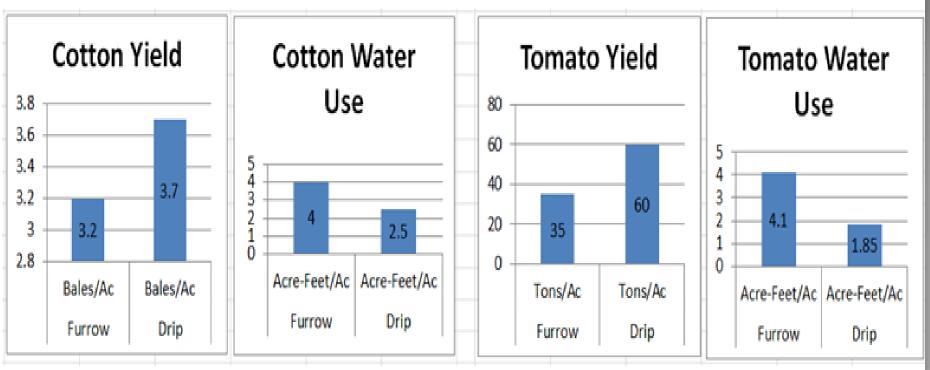
Drip can target water uniformly over space....

....AND time.

Ę

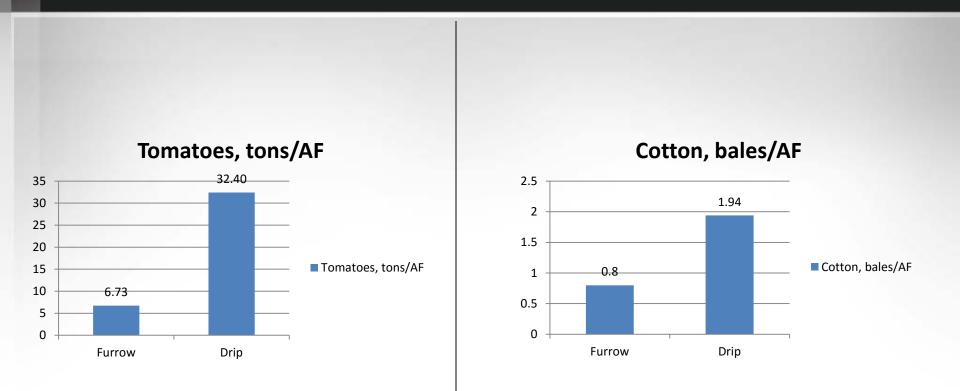
Drip Case Study: San Luis Canal Company Conservation Program (\$500/Ac self funded)

	YIELDS					
Crop	Furrow	Drip				
Cotton	3.2 bales/ac	3.7 bales/ac				
Tomatoes	35 tons/ac	60 tons/ac				
	WATER USAGE					
Cotton	4.0 af/ac	1.90 af/ac				
Tomatoes	5.2 af/ac	1.85 af/ac				



Presented 2/5/2013 at CII by Chase Hurley, G.M. of SLCC - caii.org

San Luis Canal Company: Average results over 15,000 acres


Data Highlights

TORO_®

Source: Chase Hurley, General Manager, San Luis Canal Company

Another way of looking at the data....WUE

New University of California Cooperative Extension (UCCE) Report

Contribution of University of California Cooperative Extension to Drip Irrigation

Rebecca Taylor, Doug Parker, and David Zilberman

- The sum of the value of water saving and the additional income from the yield effect lies between \$313 million and \$1.13 billion, with an average of \$748 million.
- Accrediting UCCE one fourth of this value means that UCCE's work in drip irrigation brings the state between \$78 million and \$283 million annually.
- Considering the entire UCCE budget in 2010 was \$99 million, this is a remarkable return on investment

TORO

Contribution of University of California Cooperative Extension to Drip Irrigation

he Cooperative Extension of the

University of California (referred

to as UCCE) is celebrating its

part of the Division of Agricultural and

Natural Resources and comprised of

200 locally based farm advisors, 130

campus-based Extension specialists, 57

county offices throughout the state, and

nine Research and Extension Centers.

While UCCE's specific goals, methods,

and name have changed over the last

century, its basic vision has endured:

In honor of 100 years of UCCE, we embarked on a study to assess

"practical education for the people

can lead to a better society for all."

the impact of Cooperative Exten-

sion in California, focusing on a

handful of case studies. We chose

a case-study approach because the

literature on the distribution of ben

grams suggests that a small numbe

of projects account for most of the

We decided to start with drip irr

ation for two reasons: At their fall

2013 meeting, an informal survey of County Directors identified drip irriga

of UCCE. Furthermore, it is timely

to look at this technology during this

period of severe drought in California.

Moreover, the history of drip irriga-

tion in California showcases the many

roles UCCE plays: identifying, test-

ing and disseminating new technolo-

gies, reducing adoption risk, training

technology users, and continually

tion as one of the major success stories

effects of a research program.

efits of Research and Extension Pro-

100th anniversary this year. UCCE is

Rebecca Taylor, Doug Parker, and David Zilberman

In the 100th anniversary year of University of California Cooperative Extension (UCCE), this study examines the role UCCE has played in the evolution and adaption of one noteworthy technology in California agriculture-offic pringation. With UCCE personnel responsible for both introducing and continually adapting drip irrigation to numerous California crops and locations, we estimate the value of UCCE's work in drip irrigation annually in water savings and yield increases.

il cut away to expose a buried drip rigation line in a tomato field. Photo courtesy of Pete Mortimer, USDA ARS

requires investment in equipment that increases water-use efficiency (amount of water actually consume by the crop), and improves the precision of water delivery in terms of the timing and location of irrigation Its higher water-use efficiency tends to increase yields and frequently saves water used per acre. In choos ing drip technology, farmers trade off higher equipment cost for better performance. The impact of drip tech nologies varies across locations and crops-for example, providing highe gains in sandy areas or on steep hills Drip was introduced to California agriculture in 1969, but its take-off was slow. By 1988, only 5% of irrigate acres in California were using drip rrigation, as switching to drip irrigation seemed costly and risky. From the beginning. UCCE farm advisors specialists, and economists worked to provide information to improve these ough irrigation choices. UCCE initiated field experiments across the state and in numerous crops and raised awareness through research reports demonstrations, and meetings. UCCE efforts complemented that of drip manufacturers and distributors with the private sector handling technical concerns and UCCE identifying how drip irrigation can improve economic and agronomic performance. Drip irrigation has since been widely adopted in the last 25 years, with almost 40% of the irrigated cropland in Califor-

nia now using drip. Below, we detail

the different stages of its adoption.

collaborating with various clientele. Drip Irrigation in California Early Adoption: 1965–1975

Drip irrigation (and related low-volume irrigation technologies like trickle) Israel introduced modern drip irri gation in 1965. Don Gustafson, a

1 [

IA: Incentives for Efficient Irrigation Products and Services

Irrigation Products and Services:

- Increase agricultural yields per unit of input
- Preserve and protect ecosystems
- Enhance the quality of life for citizens through the enhancement and • preservation of our nation's landscape systems

The IA supports the development and promotion of environmentally responsible economic and regulatory incentives for:

- Installation of efficient irrigation products and systems
- Retrofits of existing irrigation systems with water-efficient technologies ۲
- Design and maintenance practices that foster and support efficient irrigation

es for Efficient Irrigation Products and Services buttry provides a broad range of products and services that enable the efficient use and reuse of water

letrofts of existing irrigation systems with water-efficient technologies. lesign and maintenance practices that foster and support efficient irrigation

opted by the IA Roard of Directory, July 2011

Adopted by the IA Board of Directors, July 2011

Where should we spend our incentive dollars?

OR

Cash for Grass?

~ \$500,000,000 last year in CA?

Modernizing Ag?

~ \$60 million made available last year in CA SWEEP since 2014

Where should we spend our incentive dollars?

Summary of SWEEP Projects (2014-2016)

Funding Year	2014	2015	2016	Total
Funds Available (\$M)	\$10	\$10	\$40*	\$60
Funds Awarded (\$M)	\$8.5	\$9.4	\$16	\$33.9
Number of Projects	133	99	128	360
Total Project Acres	24,000	19,035	27,300	70,335
Estimated Annual GHG Reductions (MTCO2E)	51,627	3,068	5,635	60,330
Estimated Annual Water Savings (Ac-Ft)	24,529	12,959	22,267	59,755

*CDFA anticipates making additional award announcements in fall 2016

CA Flood to Drip: Cost/Benefit Analysis

California, 2013 FRIS				
	Sprinkler			Total
	(pressure)			Irrigated
	acres	Gravity acres	Drip acres	Acres
		Red items		
		have drip		
Table 36 data by crop:		opportunity		
Corn for grain or seed	5,340	146,921		152,261
Corn for silage or greenchop	37,526	326,125		363,651
Sorghum for grain or seed	1,755	8,550		10,305
Wheat for grain or seed	121,181	218,007		339,188
Beans, dry edible	16,405	22,450		38,855
Rice		1,051,374		1,051,374
Other small grains	29,285	48,238		77,523
Alfalfa	181,932	482,386		664,318
All other hay	96,984	340,296		437,280
All Cotton	37,371	201,300	36,163	274,834
Vegetable acres	280,298	155,814	581,924	1,018,036
Sweet Corn	110	12,671	15,639	28,420
Tomatoes in the open	24,722	59,991	198,574	283,287
Lettuce and Romaine	74,705	9,370	113,642	197,717
Potatoes	56,873	2610	3618	63,101
All Berries	1040	7	32,396	33,443
Orchards, vineyards, nut trees	289,629	396,150	1,890,822	2,576,601
All other crops	178,064	71,497		249,561
Pastureland	50,264	383,306		433,570
Column Total	1,483,484	3.937.063	2,872,778	8,293,325
Method as percent of CA total	5/0	47%	35%	
Drip Opportunity (red gravity)		1,467,220		
US Totals, 2013 FRIS				
(Table 28 Totals)	34,894,109	21,504,684	4,889,912	55,283,340
Method as percent of US total	63.1%	38.9%	8.8%	
CA as % of US Total	4%	18%	59%	15%

Irrigation Methods and Application Uniformity: Drip Micro Payback Wizard Data

IRRIGATION APPLICATION UNIFORMITY COEFFICIENTS:

Averages for Gravity (.67), Sprinkler (.68), Mechanized (.77) and Drip (.88) based on NRCS data below:

Table 1-NM Potential System Efficiency			
Туре	Efficiency	y Type Efficie	
(name)	(%)	(name)	(%)
Border, contour levee, field crop	70	Furrow, graded	70
Border, ditch	60	Furrow, level	80
Border, graded	70	Furrow, surge	80
Border, guide	60	Linear move	85
Border, level or basin	80	Sprinkler, biggun or boom	55
Center Pivot, (low pres. drops)	80	Sprinkler, handline or wheelline	65
Center Pivot, (over-pipe impact)	70	Sprinkler, solid set (overhead)	75
Center Pivot, LEPA (drag hose)	90	Sprinkler, solid set (under tree)	75
Flood, contoured ditch	60	Traveling big gun	60
Flood, controlled	60	Trickle, continuous tape	90
Flood, uncontrolled	45	Trickle, micro-spray	85
Furrow, contour	70	Trickle, pt source emitter	90
Furrow, corrugation	70		

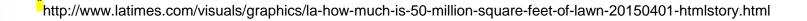
http://www.dripmicrowizard.com/#

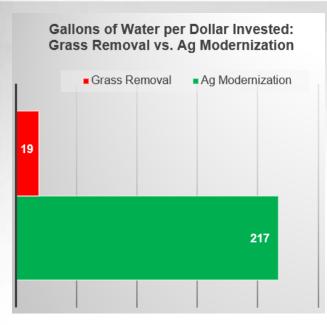
Flood to Drip: Potential Decreased Water Demand

Converting California Flood Acres to Drip Irrigation: Potential Decrease in Water Demand

		Acre-Feet		Acre-Feet		Potential decrease
CA crops which have been		per Acre		per Acre		in water demand by
shown to benefit from drip	Gravity Acres	Used -	Total Acre-Feet	•	Total Acre-Feet	using drip,
irrigation***	(2013 FRIS)	Gravity**	Used - Gravity	Drip*	Used - Drip	Acre-Feet
Corn for grain or seed	146,921	3.00	440,763	2.28	335,421	105,342
Alfalfa	482,386	4.50	2,170,737	3.42	1,651,931	518,806
All Cotton	201,300	2.50	503,250	1.90	382,973	120,277
Vegetable acres	155,814	3.00	467,442	2.28	355,723	111,719
Sweet Corn	12,671	3.33	42,194	2.53	32,110	10,084
Tomatoes in the open	59,991	3.50	209,969	2.66	159,786	50,182
Lettuce and Romaine	9,370	2.10	19,677	1.60	14,974	4,703
Potatoes	2610	2.30	6,003	1.75	4,568	1,435
Orchards, vineyards, nut trees	396,150	3.00	1,188,450	2.28	904,410	284,040
Total Gravity Acres	1,467,213		5,048,485		3,841,897	1,206,588
Average AF/AC water yield by converting to drip: (1,467,213 acres/1,206,588 AF savings):						

Ag Modernization (upgrade from gravity to drip)


Cost is ~\$1,200/Acre / ~0.82 Acre Feet/Acre "saved"


= ~\$1,500/Acre Foot of water "saved" = \$.0046/gallon = \$3.44/CCF = 217 gallons/\$

Grass Removal ("cash for grass")

Cost is \$2/square foot = \$87,120/Acre / ~ 5 Acre Feet of Water "saved" *

= \$17,424/Acre Foot of water "saved" = \$.0535/gallon = \$40.00/CCF = 19 gallons/\$

Ag modernization is 217/19 = 11 times more cost effective per incentive dollar spent.

Other Considerations:

- Ag modernization increases productivity and reduces pollution, inputs
- Grass water waste is primarily caused by poor equipment and mis-management
- Grass provides numerous benefits

Ag Modernization (upgrade from gravity to drip)

Cost is ~\$1,200/Acre / ~0.82 Acre Feet/Acre "saved"

= ~\$1,500/Acre Foot of water "saved" = \$.0046/gallon = \$3.44/CCF = 217 gallons/\$

SWEEP Estimate = \$60,000,000 to save 60,000 AF = 325 gallons/\$

Grass Removal ("cash for grass")

ĐК

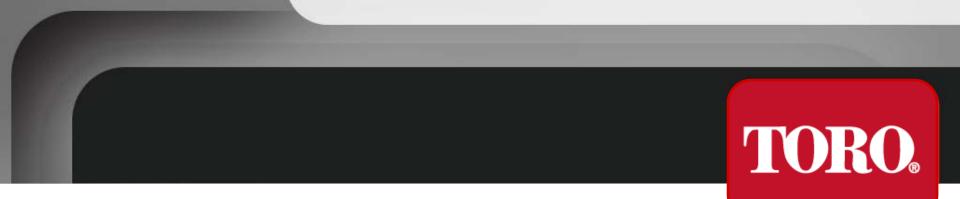
Cost is \$2/square foot = \$87,120/Acre / ~ 5 Acre Feet of Water "saved" *

= \$17,424/Acre Foot of water "saved" = \$.0535/gallon = \$40.00/CCF = 19 gallons/\$

If savings is ~4 AF instead of 5 AF then = 15 gallons/\$

http://www.latimes.com/visuals/graphics/la-how-much-is-50-million-square-feet-of-lawn-20150401-htmlstory.html

Ag modernization is 325/15 = 21 times more cost effective per incentive dollar spent.



How do we get the most SPLASH

for our CASH\$?

Questions?

